Cornell finds natural selection in humans

October 21, 2005

ITHACA, N.Y. -- The most detailed analysis to date of how humans differ from one another at the DNA level shows strong evidence that natural selection has shaped the recent evolution of our species, according to researchers from Cornell University, Celera Genomics and Celera Diagnostics.

In a study published in the Oct. 20 issue of the journal Nature, Cornell scientists analyzed 11,624 genes, comparing how genes vary not only among 39 humans but also between the humans and a chimpanzee, whose DNA is 99 percent identical to humans.

The comparisons within and between species suggest that about 9 percent of genes that show some variability within humans or differences between humans and chimpanzees have evolved too rapidly to be explained simply by chance. The study suggests that positive Darwinian natural selection -- in which some forms of a gene are favored because they increase the probability of survival or reproduction -- is responsible for the increased rate of evolution. Since genes are blueprints for proteins, positive selection causes changes in the amino acid sequence of the protein for which the gene codes.

"Our study suggests that natural selection has played an important role in patterning the human genome," said the paper's lead author, Carlos Bustamante, assistant professor of biological statistics and computational biology at Cornell.

The Cornell/Celera team found that genes involved in immune function, sperm and egg production, sensory perception and transcription factors (proteins that control which genes are turned on or off) have been particularly affected by positive selection and show rapid evolution in the last 5 million years, when humans shared a common ancestor with chimps.

Likewise, the researchers found that approximately 13 percent of the genes that may vary show evidence of slightly deleterious or harmful mutations in human populations; these include genes involved in determining the basic structure of cells and muscles as well as genes that control traffic in and out of the cell. These mutations are subject to weak negative selection, according to the study. In general, negative selection eliminates from the population very harmful changes to proteins that kill or stop reproduction. But mutations that have led to slightly deleterious versions of the gene -- mutations that may cause disease or only slightly reduce the average number of children left by those that carried the mutation -- can by chance become quite common in the population.

The authors also found a correlation between genes predicted to be under negative selection and genes implicated in certain hereditary diseases. For example, among the genes the researchers predicted to be under negative selection are those involved in muscular dystrophy and in Usher syndrome, the most common cause of congenital blindness and deafness in developed countries.

"We have a long way to go before we can predict from looking at sequences, which mutations in which genes and under which environmental conditions can ultimately lead to disease. This is a first step in identifying the classes of genes that appear to be particularly vulnerable to these types of changes," said Bustamante.

A team from Celera initiated the project and sequenced more than 20,000 genes in 39 humans and a chimpanzee. By comparing the DNA sequences of the 39 human subjects across the 20,000 genes, the Celera researchers identified DNA sites in the genome where individuals in the sample differed from one another. The chimpanzee sequence was then used to identify which form of the gene was the original ancestral form and which was the derived or new type. The original goal of the project was to identify novel amino acid variants that could then be tested for association with human disease in subsequent studies. The Cornell researchers became involved at the analysis stage in order to make predictions about what types of changes are most likely to be functionally important.
-end-
Celera and the National Institutes of Health funded the study.

Cornell University

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.