New CU-Boulder study shows diversity decreases chances of parasitic disease

October 21, 2008

A new University of Colorado at Boulder study showing that American toads who pal around with gray tree frogs reduce their chances of parasitic infections known to cause limb malformations has strong implications for the benefits of biodiversity on emerging wildlife diseases.

The experiments showed that when the toad tadpoles were raised in tanks with the parasitic trematodes -- tiny worms whose larvae burrow into tadpole limb regions and disrupt normal leg development -- 40 percent of the emerging frogs became deformed, said CU-Boulder Assistant Professor Pieter Johnson. But when the toad tadpoles were joined in the tanks with gray tree frog tadpoles, parasitic infections in the toads dropped by almost half, said Johnson, lead author of the study.

The study showed tree frog tadpoles acted as "sponges" for the trematode parasites, which were subsequently killed by the immune systems of frog tadpoles, said Johnson. As a result, fewer parasites were available to infect and cause malformations in the toads. Both the gray tree frog and American toad are broadly distributed in the Midwest and eastern United States and often occur in the same wetlands, he said.

"This is one of the first experimental studies to definitively show that an increase in diversity of host species actually can reduce parasite transmission and disease," said Johnson of CU-Boulder's ecology and evolutionary biology department. Published in the October issue of Ecology Letters, the study has implications for the declining global diversity of wildlife species that are susceptible to parasitic infections, said Johnson.

Other research has shown that a decrease in diversity in mammal host species for ticks carrying Lyme disease increases the risk of Lyme disease in humans, Johnson said. Similar relationships between wildlife diversity and disease prevalence have been suggested by other researchers to influence other vector-borne diseases, including West Nile virus, tick-borne encephalitis and bubonic plague, he said.

"In the absence of parasites, the toads and frogs are pure competitors," Johnson said. "But when trematode parasitism is present in the ecosystem, the adage 'the enemy of my enemy is my friend' comes into play for the toads, which are essentially shielded from infections by the tree frogs." Co-authors on the Ecology Letters study included Richard Hartson from the University of Wisconsin-Madison and Donald Larson and Daniel Sutherland from the University of Wisconsin-La Crosse.

The researchers also ran experiments involving American toad tadpoles coupled with green frog tadpoles, and others involving American toads, eastern tree frogs and green frogs together in the same tanks, said Johnson. In the tanks containing toad tadpoles and green frog tadpoles, the toad tadpoles had similarly high infection rates to those shown when they were the only tadpoles in the tanks.

But when all three tadpole types were raised together, the toad tadpoles were once again buffered from the parasites by the "dilution effect" provided by tree frogs. "Thus, the important determinant of parasite transmission was not total host diversity but the specific composition of the host community," wrote the authors.

The trematode has a complex life cycle involving snails, amphibians and predators. Host snails release parasite larvae into the water, infecting amphibians and causing deformations. Deformed toads and frogs rarely survive long in the wild because of their susceptibility to predators like wading birds, which ingest them and later defecate into wetlands, releasing trematodes to infect other snails and completing the life cycle.

As few as 12 trematode larvae, known as cercariae, can kill or deform a single tadpole by forming cysts in its developing limbs, causing missing limbs, extra limbs and other severe malformations, Johnson said. A 2007 CU-Boulder study led by Johnson showed high levels of nutrients like nitrogen and phosphorus used in farming and ranching activities fuel trematode infections in North American amphibians by hiking the abundance and reproduction of the snail species that hosts trematodes.

Deformed frogs first gained international attention in the mid-1990s when a group of Minnesota schoolchildren discovered a pond where more than half of the leopard frogs had missing or extra limbs, he said. Since then, reports of deformed amphibians have become widespread in the United States, leading to speculation they were being caused by factors like pesticides, increased ultraviolet radiation or parasitic infection.

A recent study of more than 6,000 species of amphibians worldwide concluded that 32 percent were threatened and 43 percent were declining in population because of causes like habitat loss, pollution and emerging diseases.
-end-
The new study was funded primarily by the National Science Foundation.

Johnson was recently awarded a five-year, $875,000 David and Lucille Packard Fellowship to support his studies of emerging diseases in changing environments. For more information on Johnson's research visit the Web at http://www.colorado.edu/eeb/facultysites/pieter/index.htm.

University of Colorado at Boulder

Related Lyme Disease Articles from Brightsurf:

Cracking the Lyme disease code
The next time a tick feeds on you, Washington State University researchers hope to make sure persistent arthritis caused by Lyme disease doesn't linger for a lifetime.

Many lyme disease cases go unreported; A new model could help change that
A new model based on 17 years of data can help predict the trajectory of where Lyme disease will spread.

Ethnobotanical medicine is effective against the bacterium causing Lyme disease
A preclinical in vitro study shows that selected plant-based herbal medicines, especially Ghanaian quinine and Japanese knotweed, work better than antibiotics against the bacterium that causes Lyme disease.

Paper-based test could diagnose Lyme disease at early stages
After a day hiking in the forest, the last thing a person wants to discover is a tick burrowing into their skin.

Lyme disease claim lines increased 117% from 2007 to 2018
From 2007 to 2018, claim lines with diagnoses of Lyme disease increased nationally 117%.

New effective vaccines for Lyme disease are coming
There is no effective vaccine currently available to prevent Lyme disease in humans.

New test diagnoses Lyme disease within 15 minutes
Current testing for Lyme disease, called the standard 2-tiered approach or the STT, involves running two complex assays (ELISA and western blot) to detect antibodies against the bacterium, and requires experienced personnel in a lab, and a few hours to carry out and interpret.

An innovative new diagnostic for Lyme disease
In new research, Joshua LaBaer, executive director of the Biodesign Institute at Arizona State University and his colleagues describe an early detection method for pinpointing molecular signatures of the disease with high accuracy.

Mouse, not just tick: New genome heralds change in Lyme disease fight
As Lyme disease increases, researchers have taken a significant step toward finding new ways to prevent its transmission.

Breakthrough paves way for new Lyme disease treatment
Virginia Tech biochemist Brandon Jutras has discovered the cellular component that contributes to Lyme arthritis, a debilitating and extremely painful condition that is the most common late stage symptom of Lyme disease.

Read More: Lyme Disease News and Lyme Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.