New research informs California strawberry production practices

October 21, 2013

SALINAS, CA--In the coastal valleys of central California, where more than 80% of the United States' strawberry crops are grown, there is developing concern about the impact of these vast production systems on groundwater contamination. According to a study published in the August 2013 issue of HortScience, changes in growers' cultural practices and the introduction of new cultivars has increased strawberry yields in the region by 140% during the past 50 years. But as crop yields have increased, water quality has diminished; water quality monitoring in these coastal valleys has shown that groundwater often exceeds Federal drinking water standards. Strawberry growers are facing increasing regulatory pressure to improve their management practices in order to protect groundwater.

Looking for ways to help strawberry producers address these critical issues, Thomas Bottoms and Timothy Hartz from the Department of Plant Sciences at the University of California, Davis, along with Michael Cahn and Barry Farrara of the University of California Cooperative Extension in Salinas, studied nitrogen (N) fertilization and irrigation management practices in fall-planted annual strawberry (Fragaria x ananassa Duch.) fields. Their multidimensional research was designed to determine soil mineral nitrogen, monitor irrigation applied, and estimate crop evapotranspiration. They also surveyed growers regarding their nitrogen (N) fertilization practices. "Our primary objective was to document plant and soil nitrogen dynamics (in annual strawberry production) under the environmental conditions and current grower management practices of the central coast region of California," said corresponding author Timothy Hartz. "Additionally, we evaluated strawberry response to preplant controlled-release fertilizer (CRF) application rates in three commercial field trials."

The researchers determined that strawberry biomass nitrogen accumulation showed a consistent pattern across fields with limited N accumulation from fall transplanting through March, followed by a consistent rate of crop N uptake through the rest of the production season. "Our research determined that current nitrogen fertilization practices did not efficiently match the crop N uptake pattern observed," Hartz said. He explained that in California's central coastal region, most strawberry fields are planted after vegetable crops. "These fields typically have significant residual soil mineral nitrogen. Therefore, justification for preplant controlled-release fertilizer (CRF) in this production system appeared to be to ensure N availability throughout the winter, when NO3-N leaching by rainfall is possible. However, the replicated trials showed that preplant CRF rates had a minimal effect on strawberry nitrogen accumulation through the June sampling, by which time the vast majority of controlled-release fertilizer nitrogen had been released."

The researchers' evaluation of irrigation practices showed that efficient drip irrigation management was demonstrated in many fields. "In only one of the nine highest-yielding fields was seasonal irrigation more than 120% of evapotranspiration. The consistency of crop N uptake over the spring and summer provided a guideline for N fertigation. Adjusting for higher fruit yield potential under California conditions, this supports prior research that found N fertigation averaging 0.5 to 0.9 kg/ha per day to be adequate for peak production."

"Our results suggest several ways in which N management could be improved in this production system," the authors wrote. "The replicated controlled-release fertilizer (CRF) rate trials indicated that routine use of high CRF rates was not an efficient practice. Reducing CRF rates, particularly in heavier textured soils that are less easily leached, could substantially improve N use efficiency."
-end-
The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/48/8/1034.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

American Society for Horticultural Science

Related Nitrogen Articles from Brightsurf:

Chemistry: How nitrogen is transferred by a catalyst
Catalysts with a metal-nitrogen bond can transfer nitrogen to organic molecules.

Illinois research links soil nitrogen levels to corn yield and nitrogen losses
What exactly is the relationship between soil nitrogen, corn yield, and nitrogen loss?

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.

New nitrogen products are in the air
A nifty move with nitrogen has brought the world one step closer to creating a range of useful products -- from dyes to pharmaceuticals -- out of thin air.

'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.

A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.

How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.

Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.

Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.

We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.

Read More: Nitrogen News and Nitrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.