A natural boost for MRI scans

October 21, 2013

Magnetic resonance imaging (MRI) is a technique widely used in medicine to create images of internal organs such as the heart, the lungs, the liver and even the brain. Since its invention in 1977, MRI has become a staple of clinical radiology, used across the world to identify health problems in millions of patients worldwide. But despite its prominence, MRI suffers from low sensitivity, which can be improved by injecting patients with potentially toxic agents. Publishing in PNAS, researchers from EPFL have found a way to achieve high spatial and temporal resolution MRI using a safe compound that is naturally produced in the body.

MRI works by manipulating the alignment of the body's hydrogen atoms, which are susceptible to magnetic fields. Normally, our body's atoms spin around randomly, without any observable direction. During an MRI scan, a powerful magnet is used to generate a magnetic field that can be up to 40,000 times stronger than the Earth's. This causes approximately half the atoms to align towards the patient's head and the other half towards the feet.

The opposing alignment of the body's atoms cancels out much of the background 'noise', since for every atom lined up one way there is one lined up the opposite way. However, a few atoms per million (still a huge amount in total) line up in either direction without a cancelling counterpart. By reading out the energy levels of these atoms, the MRI computer can generate detailed images of the body, which can be central in diagnosing disease.

A well-known weakness of MRI is low sensitivity. This can be addressed with the use of hyperpolarization techniques, which involve injecting patients with substrates that contain a stable carbon isotope that is almost perfectly aligned with the machine's magnetic field. However, the preparation of these contrast agents requires the use of highly reactive chemicals called persistent radicals, which can be potentially toxic. Consequently, they have to also be filtered out prior to injecting the substrates and require additional pharmacological tests, all of which considerably reduce the MRI contrast, while posing a risk to the patient.

Researchers replace toxic chemicals with a natural substance

A research team led by Arnaud Comment developed a breakthrough solution to this problem. They found that high resolution in contrast-enhanced MRI can still be achieved with pyruvic acid, an organic chemical that occurs naturally in the body as a result of glucose breakdown, without the need of persistent radicals.

The scientists exposed frozen, pure pyruvic acid to ultraviolet light for an hour, which resulted in the generation of non-persistent radicals at a high concentration. The radicals automatically recombine to produce a solution only containing compounds that are naturally present in the body but in much lower concentrations. It was used to perform high-resolution MRI on a mouse brain. The resulting images showed detailed spatial and temporal resolution to the point of tracking the metabolism of pyruvic acid in the animal's brain.

The new hyperpolarization method opens a way to perform MRI with compounds that are not toxic, thus reducing or altogether eliminating associated health risks. In addition, because it does not require filtering or additional tests, the method will cut down on the time and cost of contrast-enhanced MRI protocols, thus improving the quality of the scans and diagnosis. The authors believe that the technique will be rapidly incorporated into the clinical setting and call it "a substantial step forward toward clinical radiology free of side effects".
-end-
This study represents a collaboration of EPFL with Paul Scherrer Institut, UNIL and the University of Geneva.

Ecole Polytechnique Fédérale de Lausanne

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.