Grazers and pollinators shape plant evolution

October 21, 2013

It has long been known that the characteristics of many plants with wide ranges can vary geographically, depending on differences in climate. But changes in grazing pressure and pollination can also affect the genetic composition of natural plant populations, according to a new study.

Researchers at Uppsala University and Stockholm University are presenting the new study this week in the journal Proceedings of the National Academy of Sciences, PNAS.

It is known that a prominent floral display increases attractiveness to pollinators, but also increases the risk of damage from grazing animals and seed-eating insects. To investigate how pollinators and grazing animals affect the characteristics of natural plant populations, these researchers studied bird's eye primrose populations in alvar grasslands on the Baltic island of Öland. Two distinct morphs of primrose occur there: a short morph that produces its flowers close to the ground and a tall morph that displays its flowers well above the ground. The tall morph is better at attracting pollinators, but, on the other hand, it is more frequently damaged by grazing animals and seed predators.

In field experiments the scientists have shown that grazing pressure and pollination intensity determine whether the short or the tall primrose morph reproduces more successfully. The difference in plant height has a genetic basis, and over time differences in reproductive success affect the genetic composition of plant populations. For a period of eight years, the researchers documented changes in the proportion of short plants in natural populations and field experiments. The results show that altered grazing pressure leads to rapid changes in the genetic composition of the primrose populations, specifically in the proportion of short plants.

The Agricultural Landscape of Southern Öland has been a World Heritage Site since 2000. The grazing pressure on the alvar grasslands of Öland has increased dramatically in the last fifteen years as a result of measures taken to keep the landscape open.

- The study shows that grazing pressure impacts not only which plants dominate but also the genetic composition of the plant populations. These findings help us understand how differences in environmental conditions influence the evolution of genetic differentiation among plant populations, says Professor Jon Ågren at the Evolutionary Biology Centre.
-end-


Uppsala University

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.