Nav: Home

New study to characterize methane emissions from natural gas compressor stations

October 21, 2016

FORT COLLINS, COLORADO - Natural gas, a clean-burning fuel, has significant potential as a "bridge fuel" on a path to a sustainable energy future. However, its climate benefits are highly dependent upon the emission rate of methane from the nation's vast natural gas infrastructure.

Colorado State University, home to some of the world's top researchers on methane emissions, will lead a major Department of Energy project to analyze emissions from a specific part of the natural gas supply chain: compressor stations. The new project will help scientists develop a more complete picture of overall emissions.

Methane is the primary component of natural gas and a powerful greenhouse gas with a global warming potential 84 times that of carbon dioxide over a 20-year timeframe. Although atmospheric methane originates from many sources, no industry has received more scrutiny for emissions than the natural gas sector. Significant quantities of methane are emitted from its million-plus miles of pipeline, half million wells, and thousands of gathering, processing, transmission, storage and distribution facilities.

Daniel Zimmerle, senior researcher at CSU's Energy Institute, will lead the two-year, $1.8 million U.S. Department of Energy-funded project. CSU, engineering firm AECOM and industry partners will conduct a 20- to 26-week field campaign focusing on natural gas gathering compressor stations.

Natural gas from wells is "gathered" into pipelines and boosted in pressure at compressor stations for transport to downstream processing plants and on to the transmission system. The CSU study is expected to measure emissions from 80 compressor stations nationwide and more than 300 individual compressor units.

"Industry partnership is critical to this type of study," Zimmerle said. "The study team needs facility access to make detailed measurements, and the partners also provide key data about operations at the facilities."

The CSU team includes co-principal investigator Anthony Marchese, professor of mechanical engineering, who previously led an Environmental Defense Fund study to measure methane emissions from gathering and processing facilities.

Marchese's prior study (co-authored by Zimmerle) looked at 114 gathering compressor stations and 16 processing plants in 13 U.S. states. Twenty percent of those facilities showed methane emissions - including both leaks and non-leak sources - of more than 1 percent. The study concluded that the gathering and processing sector of the natural gas system was under-represented by a factor of 8 in the U.S. Environmental Protection Agency Greenhouse Gas Inventory. As a direct result of the CSU work, the inventory was updated in 2016, and gathering operations now represent 27 percent of all methane emissions in the current inventory.

"This new study 'fills in the blanks' of our previous study," Marchese said, noting that the previous study used downwind techniques to measure entire facilities at one time. "We'll get a better view of what types of emissions sources influence the facility-level emissions, component by component."

The newly funded study is in response to a DOE-outlined need for characterizing "leak rates and leak frequencies for compressors at boosting stations, including disaggregated detail to reflect unique characteristics of different compressor types (e.g., wet seals vs. dry seals)."

The results of the study will also inform future versions of the EPA Greenhouse Gas Inventory, which now employs the CSU-derived facility-level emission rate for gathering facilities but does not yet include component-level emissions rates for these facilities.

The new study will employ methods used during another previous CSU study, led by Zimmerle, that looked at transmission and storage facilities, which take natural gas from gathering and processing plants to distribution companies or other end users.

The CSU researchers' goal is to build a national model for methane emissions, and use that model to account for the mix of station types and activities when evaluating emissions nationally.

"We'll go to older basins, new basins, we'll look at dry gas, wet gas, different production styles ­­ - all these variations," Zimmerle said.
-end-


Colorado State University

Related Methane Articles:

Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Methane not released by wind on Mars, experts find
New study rules out wind erosion as the source of methane gas on Mars and moves a step closer to answering the question of whether life exists on other planets.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
Methane-consuming bacteria could be the future of fuel
Northwestern University researchers have found that the enzyme responsible for the methane-methanol conversion in methanotrophic bacteria catalyzes the reaction at a site that contains just one copper ion.
New measurement method for radioactive methane
The method developed by Juho Karhu in his PhD thesis work is a first step towards creating a precise measuring device.
New key players in the methane cycle
Methane is not only a powerful greenhouse gas, but also a source of energy.
Diffusing the methane bomb: We can still make a difference
The Arctic is warming twice as fast as the rest of the planet, causing the carbon containing permafrost that has been frozen for tens or hundreds of thousands of years to thaw and release methane into the atmosphere, thereby contributing to global warming.
China not 'walking the walk' on methane emissions
In China, regulations to reduce methane emissions from coal mining took full effect in 2010 and required methane to be captured or to be converted into carbon dioxide.
Interpreting new findings of methane on Mars
New data from the Mars Science Laboratory demonstrating the presence of methane presents novel challenges to explain how it was formed and what it suggests about the potential for life to exist or be supported on Mars.
More Methane News and Methane Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.