Nav: Home

Researchers discover ways to expand temperature stability range of solar cells

October 21, 2016

Despite the potential for powering the world with energy from the sun ¬- the most abundant source of renewable energy - only about 1 percent of the world's energy production currently comes through solar cell technology. That's because solar cells are expensive to produce and are susceptible to efficiency reductions over time.

For this reason, scientists continue to seek new solar cell materials that will overcome these deficiencies. One of the most promising is a class of materials discovered in 2009: hybrid organic-inorganic perovskites, or HOIPs.

These are extremely lightweight and flexible materials that are inexpensive to produce, compared to traditional silicon-based cells. At 22 percent (or better) efficiency at converting energy from the sun into electricity, they are approaching the 25 percent energy-producing efficiency of silicon cells. HOIPs also are unique in that they can be applied to surfaces as a thin spray-on or paint-on coating, which could be used, when connected electrically, in a variety of settings and applications, from roofs to vehicles to backpacks.

But - there's always a "but" - HOIPs are somewhat unstable, in that they degrade in quality fairly rapidly and are particularly susceptible to temperature changes. This is because these materials' atomic structures change when the temperature changes, and only particular types of molecular structures can work as solar cells - having the ability to capture energy from the sun and convert it into electricity.

However, scientists and engineers at the University of Virginia, with colleagues at the NIST Center for Neutron Research, the Oak Ridge National Laboratory and Cornell University, have made new inroads on understanding the fundamental physics behind how these cells work in a variety of "structural phase transitions."

They detail their findings in a paper published Oct. 21 in the journal Science Advances, where they identify how organic molecules in the structures play a crucial role in how the phase transitions occur.

By microscopically probing the materials using neutron-scattering experiments and computer simulations, they have discovered ways to markedly expand the stable range of the desired structure for the solar cell during temperature changes. The results could potentially revolutionize solar cell technology by speeding the process of designing solar cell materials that are both efficient and stable over a wide range of temperatures, while remaining inexpensive to produce in large quantities.

"This opens new opportunities to unlock the full potential of the HOIP-based solar cells in real applications," said UVA physicist Seung-Hun Lee, who led the study with his colleague, UVA chemical engineer Joshua J. Choi.

The physical insight at the molecular level allows the researchers to stabilize the properties of the material in various structural phases.

"The improved stability over wider ranges of temperatures will enable application of HOIP solar cells even in extreme conditions such as on spacecraft and aircraft that operate in colder environments," Choi said.

HOIPs may have particular applicability for situations where lightweight solar cell material is needed, such as to power electronic equipment for infantry on the battlefield, for backpackers, for autonomous or remotely controlled high-altitude drones, and for satellites.

Lee and Choi believe that HOIPs, or some variation of these materials, will be available someday in the near future as inexpensive inks that could be printed onto rolls of paper or plastic and then used as flexible lightweight solar cells for a range of personal electronics uses.
-end-
Their research initially was funded by UVA's College of Arts & Sciences, School of Engineering and Applied Science and Office of the Executive Vice President and Provost, and now is funded by the Department of Energy Basic Energy Sciences.

University of Virginia

Related Solar Cells Articles:

Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
A good first step toward nontoxic solar cells
A team of engineers at Washington University in St. Louis has found what they believe is a more stable, less toxic semiconductor for solar applications, using a novel double mineral discovered through data analytics and quantum-mechanical calculations.
More Solar Cells News and Solar Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...