Nav: Home

Bioprinting: Living cells in a 3D printer

October 21, 2019

Tissue growth and the behavior of cells can be controlled and investigated particularly well by embedding the cells in a delicate 3D framework. This is achieved using additive 3D printing methods - so called "bioprinting" techniques. However, this involves a number of challenges: Some methods are very imprecise or only allow a very short time window in which the cells can be processed without being damaged. In addition, the materials used must be cell-friendly during and after the 3D biopriting process. This restricts the variety of possible materials.

A high-resolution bioprinting process with completely new materials has now been developed at TU Wien (Vienna): Thanks to a special "bio ink" for the 3D printer, cells can now be embedded in a 3D matrix printed with micrometer precision - at a printing speed of one meter per second, orders of magnitude faster than previously possible.

The environment matters

"The behavior of a cell behaves depends crucially on the mechanical, chemical and geometric properties of its environment," says Prof. Aleksandr Ovsianikov, head of the 3D Printing and Biofabrication research group at the Institute of Materials Science and Technology (TU Wien). "The structures in which the cells are embedded must be permeable to nutrients so that the cells can survive and multiply. But it is also important whether the structures are stiff or flexible, whether they are stable or degrade over time".

It is possible to first produce suitable structures and then colonise them with living cells - but this approach can make it difficult to place the cells deep inside the scaffold, and it is hardly possible to achieve a homogeneous cell distribution that way. The much better option is to embed the living cells directly into the 3D structure during the production of the structure - this technique is known as "bioprinting".

Printing microscopically fine 3D objects is no longer a problem today. However, the use of living cells presents science with completely new challenges: "Until now, there has simply been a lack of suitable chemical substances," says Aleksandr Ovsianikov. "You need liquids or gels that solidify precisely where you illuminate them with a focused laser beam. However, these materials must not be harmful to the cells, and the whole process has to happen extremely quickly."

Two photons at once

In order to achieve an extremely high resolution, two-photon polymerization methods have been used at TU Wien for years. This method uses a chemical reaction that is only initiated when a molecule of the material simultaneously absorbs two photons of the laser beam. This is only possible where the laser beam has a particularly high intensity. At these points the substance hardens, while it remains liquid everywhere else. Therefore, this two-photon method is best suited to produce extremely fine structures with high precision.

However, these high resolution techniques usually have the disadvantage of being very slow - often in the range of micrometers or a few millimeters per second. At TU Wien, however, cell-friendly materials can be processed at a speed of more than one meter per second - a decisive step forward. Only if the entire process can be completed within a few hours is there a good chance of the cells surviving and developing further.

Numerous new options

"Our method provides many possibilities to adapt the environment of the cells," says Aleksandr Ovsianikov. Depending on how the structure is built, it can be made stiffer or softer. Even fine, continuous gradients are possible. In this way, it is possible to define exactly how the structure should look in order to allow the desired kind of cell growth and cell migration. The laser intensity can also be used to determine how easily the structure will be degraded over time.

Ovsianikov is convinced that this is an important step forward for cell research: "Using these 3D scaffolds, it is possible to investigate the behavior of cells with previously unattainable accuracy. It is possible to study the spread of diseases, and if stem cells are used, it is even possible to produce tailor-made tissue in this way".
-end-
The research project is an international and interdisciplinary cooperation in which three different institutes of the TU Vienna were involved: Ovsianikov's research group was responsible for the printing technology itself, the Institute of Applied Synthesic Chemistry developed fast and cell friendly photoinitiators (the substances that initiate the hardening process when illuminated) and the Institute of Lightweight Structures and Structural Biomechanics analyzed the mechanical properties of the printed structures.

The high-resolution 3D Printing technology and the materials are being commercialized the young but very successful TU Wien spin-off UPNano GmbH (https://www.upnano.at)

Contact:

Prof. Aleksandr Ovsianikov
Institut für Werkstoffwissenschaft und Werkstofftechnologie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T +43-1-58801-30830
aleksandr.ovsianikov@tuwien.ac.at

Dr. Marica Markovic
Institut für Werkstoffwissenschaft und Werkstofftechnologie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T +43-664-605883087
marica.markovic@tuwien.ac.at

Vienna University of Technology

Related Behavior Articles:

Fishing for a theory of emergent behavior
Researchers at the University of Tsukuba quantified the collective action of small schools of fish using information theory.
How synaptic changes translate to behavior changes
Learning changes behavior by altering many connections between brain cells in a variety of ways all at the same time, according to a study of sea slugs recently published in JNeurosci.
I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.
Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.
AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.
Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.
Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.
Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.
Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.
Is Instagram behavior motivated by a desire to belong?
Does a desire to belong and perceived social support drive a person's frequency of Instagram use?
More Behavior News and Behavior Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.