Nav: Home

Researchers watch quantum knots untie

October 21, 2019

A quantum gas can be tied into knots using magnetic fields. Our researchers were the first to produce these knots as part of a collaboration between Aalto University and Amherst College, USA, and they have now studied how the knots behave over time. The surprising result is that the knots untie themselves over a short period of time, before turning into a vortex.

The research was mainly carried out by Tuomas Ollikainen, a PhD student at Aalto university who split his time between carrying out experimental work in Amherst in Massachusetts, and analyzing the data and developing his theories at Aalto.

"We hadn't been able to study the dynamics of these sorts of three-dimensional structures experimentally before, so this is the first step to this direction." says Ollikainen. "The fact that the knot decays is surprising, since topological structures like quantum knots are typically exceptionally stable. It's also exciting for the field because our observation that a three-dimensional quantum defect decays into a one-dimensional defect hasn't been seen before in these quantum gas systems"

The researchers hope their new study opens up new avenues in experimental research. One of the key breakthroughs in the study was being able to have better control over the state of the quantum gas, which allowed them to detect changes in its structure, like the decay of the knots and the formation of the vortex.

"Of course one can simulate these things but actually making quantum knots is not that easy. By being able to control the environment better we can explore different effects and get to understand more about these exciting quantum systems." tells Ollikainen.

"When we tied quantum knots in 2016, it was the first realization of three-dimensionally winding topological structures. That was like breathing air another planet for the first time. Amazing." says Prof. Mikko Möttönen, head of Quantum Computing and Devices group where Ollikainen works.

"I know that many researchers have paid attention to our work and got inspiration to try this out in completely different type of systems. It would be great to see this technology being used some day in a practical application, which may well happen. Our latest results show that while quantum knots in atomic gases are exciting, you need to be quick to use them before they untie themselves. Thus the first applications are likely to be found in other systems." Möttönen continues.
-end-
The Quantum Computing and Devices group is a part of QTF, the Academy of Finland Centre of Excellence for Quantum Technology. The research benefitted from the computational resources from CSC-IT Center for Science Ltd. and Aalto Science-IT project.

Aalto University

Related Quantum Computing Articles:

Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.
'Valley states' in this 2D material could potentially be used for quantum computing
New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing.
Sound of the future: A new analog to quantum computing
In a paper published in Nature Research's journal, Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
Virginia Tech researchers lead breakthrough in quantum computing
A team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer.
Limitation exposed in promising quantum computing material
Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a candidate to create qubits for quantum computing due to its special properties.
New material shows high potential for quantum computing
A joint team of scientists at the University of California, Riverside, and the Massachusetts Institute of Technology is getting closer to confirming the existence of an exotic quantum particle called Majorana fermion, crucial for fault-tolerant quantum computing -- the kind of quantum computing that addresses errors during its operation.
A sound idea: a step towards quantum computing
Researchers at the University of Tsukuba and the University of Pittsburgh have developed a new method for using lasers to create tiny lattice waves inside silicon crystals that can encode quantum information.
Quantum computing boost from vapour stabilising technique
A technique to stabilise alkali metal vapour density using gold nanoparticles, so electrons can be accessed for applications including quantum computing, atom cooling and precision measurements, has been patented by scientists at the University of Bath.
Quantum cloud computing with self-check
With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics.
More Quantum Computing News and Quantum Computing Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.