Nav: Home

Deepest look yet at brewer's yeasts reveals the diversity harnessed by humans

October 21, 2019

MADISON, Wis. -- Thousands of years ago, as humans tamed wild animals and plants into livestock and crops, their penchant for intoxication also led them to unwittingly domesticate a hidden workhorse of civilization: yeast.

Today, Saccharomyces cerevisiae is the bedrock of food cultures around the world. The yeast turns flour into bread and sugary drinks into beer and wine. But recent research has revealed that S. cerevisiae does not always act alone. Scientists have found that lager, the most popular beer style, is produced by a hybrid of S. cerevisiae and its wilder cousin S. eubayanus. The hybrid found its way into German breweries hundreds of years ago and kick-started an industry worth hundreds of billions of dollars.

Now, in the deepest look yet at the diversity of these yeasts, scientists from the University of Wisconsin-Madison reveal the dizzying complexity found in bottles of beer, wine and cider. By sequencing the genomes of more than 100 hybrid yeasts, the researchers discovered seven distinct combinations of yeast species, many of them tied to unique fermented beverages. Some yeasts were hybrids of as many as four species.

The research team also uncovered the genetic basis of some of the most defining traits of fermenting yeasts. Crisp, clean-tasting lagers are fermented by yeasts that can survive the cold temperatures of lager fermentation and that lost the genes that make funky aromas. The clove-like flavors of other styles of beer depend on precisely those genes with which lager strains dispensed.

The new trove of genomic data will allow researchers to further investigate the many subtle traits that contribute to these diverse drinks. And by producing new hybrids in the lab, scientists could develop novel features in fermented beverages.

Chris Todd Hittinger, a professor of genetics at UW-Madison, led the study along with graduate student Quinn Langdon. The Hittinger lab collaborated with researchers in Spain, France, Portugal and Argentina to complete the work, published Oct. 21 in Nature Ecology and Evolution.

Researchers and brewers have become increasingly aware of the hybrid nature of many brewing yeasts over the last few decades, but the true scope of diversity has been hard to pin down. Hittinger's lab pushed the field forward in 2011 by first isolating the wild S. eubayanus that, hybridized with domestic yeast, is essential for producing lager beer.

For the current study, Hittinger and Langdon analyzed scores of previously published yeast genomes and sequenced new strains, some of which they procured from homebrewing stores selling varieties that can produce the world's classic beer styles. Other yeasts were isolated in the wild or directly from fermented beverages, including wine and cider.

Most hybrids had just two parent species, but some had three or even four parents. The current study doubled the number of known triple- and quadruple-hybrids. Some hybrids were preferentially found in cold-fermented wine and Belgian style beers, while others came from champagne and cider. Most were isolated from lager beers.

A key distinction between lager-brewing yeasts and others is the production of pungent aromas, produced by chemicals called phenols. These flavors can resemble spice or clove and are desirable in some beers, and the researchers found the responsible genes intact in many non-lager strains. Lagers lack these aromas, giving them a recognizably crisp flavor profile.

Investigating the two primary lager lineages -- both hybrids of S. cerevisiae and S. eubayanus -- the researchers verified that they lacked functional genes for these key phenols. But the team found that the two lineages, Saaz and Frohberg, lost the genes in different ways. While Frohberg yeasts retain a broken version of a key gene, Saaz yeasts have lost both essential genes entirely.

"The yeasts are getting to the same end point that gives them a nice crisp flavor, but the specific molecular mechanisms of how they got there differ. That's a signal that it's a very important domestication trait," says Hittinger.

The researchers found that all of the S. cerevisiae parents stemmed from three major, previously domesticated lineages responsible for brewing ale or wine. The hybrids developed when these domesticated strains met up with their wild cousins, all of which came from the Northern Hemisphere. While the domesticated yeasts were already adapted for successful fermentation -- such as in their ability to completely digest common sugars -- the wild partners offered their own contributions.

Most notably, the vast majority of the hybrids inherited their mitochondrial genome -- a small snippet of DNA that drives energy generation in the cell -- from their wild yeast parents, rather than from domesticated S. cerevisiae. Recent work out of the Hittinger lab has shown that the wild mitochondrial genomes permit yeasts to ferment at cold temperatures, like those favored for brewing lager.

"It's a right-place, right-time story that these wild populations were able to meet up with domesticated S. cerevisiae," says Langdon. "Then the fermentation environment they found themselves in selected for important traits from each parent."

One set of hybrids had no S. cerevisiae parent at all. These yeasts were combinations of the closely related species S. eubayanus and S. uvarum. They were isolated from the most diverse sources -- strains were found in wine, cider, beer, fruit and the environment. Often considered contaminants in breweries because of their production of pungent aromas, these wilder hybrids may also be key to producing the distinct flavors of certain beverage styles.

In all, the researchers found evidence that selection by brewers, winemakers and cidermakers over millennia has harnessed the vast diversity of the Saccharomyces genus to develop the world's unique styles of fermented beverages.

"We've learned more about how lager yeasts dispensed with undesirable aromas," says Hittinger. "Now we're starting to think more about the genetic basis of the flavors that you want present in a beer."
-end-
This work was supported by the National Science Foundation (Grants DEB-1253634 and DGE-1256259), the USDA National Institute of Food and Agriculture Hatch Project Nos. 1003258 and 1020204, the National Institutes of Health (grant 5T32GM007133) and the Department of Energy Great Lakes Bioenergy Research Center (grants DOE BER Office of Science Nos. DE-SC0018409 and DE-FC02-07ER64494).

Eric Hamilton, (608) 263-1986, eshamilton@wisc.edu

University of Wisconsin-Madison

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.