Protein in blood protects against neuronal damage after brain hemorrhage

October 21, 2019

Patients who survive a cerebral hemorrhage may suffer delayed severe brain damage caused by free hemoglobin, which comes from red blood cells and damages neurons. Researchers at the University of Zurich and the UniversityHospital Zurich have now discovered a protective protein in the body called haptoglobin, which prevents this effect.

Bleeding in the narrow space between the inner and middle meninges is life threatening. This type of cerebral hemorrhage is normally caused by small protrusions in the major arteries at the base of the brain (Aneurysms) that can burst without warning. A third of patients suffering such a hemorrhage, who are often still young, die as a result of the massive increase of pressure inside the skull. "Even if we manage to stop the bleeding and to stabilize the patients, in the first two weeks after bleeding there can be delayed brain damage. This often leads to severe impairments or can even be fatal," explains Luca Regli, director of the Department of Neurosurgery at the UniversityHospital Zurich (USZ).

Free hemoglobin in the cerebrospinal fluid damages neurons

Despite great research efforts, until now it has not been possible to prevent these serious consequences of bleeding in the subarachnoid space. An interdisciplinary team of researchers from the University of Zurich (UZH), USZ and the Veterinary Teaching Hospital Zurich have now discovered a promising strategy: Haptoglobin, a protective protein found in the blood, binds the hemoglobin that has been released in the cerebrospinal fluid before it can cause damage.

"We observed that in the days after the bleeding, the accumulated blood slowly resolves and the hemoglobin from the degraded red blood cells gets into the cerebrospinal fluid," says Emanuela Keller, head of the neurosurgery intensive care unit at USZ. This protein, which is normally responsible for transporting oxygen, plays an important role in the occurrence of delayed neurological damage. "Using patient samples and tests on sheep, we have now been able to show that the hemoglobin leads to vasospasms and penetrates deep into the brain tissue, where it can directly damage neurons," says study lead Dominik Schaer, UZH professor and chief of service in the Department of Internal Medicine at USZ.

Haptoglobin binds hemoglobin and renders it harmless

The substance that makes hemoglobin so dangerous is iron, which is found in the center of the protein and has a high propensity to undergo chemical reactions. Diseases such as malaria, in which hemoglobin is also released, have led to the human body, in the course of evolution, forming its own protective protein called haptoglobin. In the blood, haptoglobin binds free hemoglobin, thus preventing its toxic effects in blood vessels and kidneys. However, the concentration of haptoglobin in the brain is very low and does not offer enough protection against a cerebral hemorrhage.

By administering purified haptoglobin directly into the cerebrospinal fluid of sheep via a catheter, the researchers were now able to make use of this natural protective mechanism. "We could show that purified haptoglobin prevents vasospasms and blocks free hemoglobin from penetrating the brain tissue," explains Dominik Schaer.

Discovery enables new treatment approach

For patients who suffer bleeding in the subarachnoid space, these results have great medical potential: "We have found a possibility to potentially prevent the toxicity of free hemoglobin after intracranial hemorrhage. This could significantly improve the neurological prognosis and the long-term quality of life for those affected," says neurosurgeon and first author of the study Michael Hugelshofer.
-end-


University of Zurich

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.