Pinpointing biomolecules with nanometer accuracy

October 21, 2019

It would be impossible to understand life without having a firm grasp on the microscopic interactions between molecules that occur in and around cells. Microscopes are and have been an invaluable tool for researchers in this regard, and many different types of microscopes and microscopy techniques exist. Accordingly, these different techniques serve different purposes and have advantages and drawbacks.

In biology and medicine in particular, researchers are seeking microscopy techniques to obtain three-dimensional information on the arrangement and orientation of individual molecules within cells at the nanometer scale. One plausible approach to achieve this is cryogenic (that is, at extremely low temperatures) electron tomography. However, this technique cannot be used to observe the interior of cells and is limited to thin slices extracted from the sample cell, which is not as useful as being able to directly localize molecules within intact cells.

To obtain more useful measurements, visible light can be used to illuminate special samples in what is known as fluorescence microscopy. When using this method, the target molecules are labelled with "fluorophores", which are tiny molecules that absorb energy from light of a specific color (frequency) and then re-emit it by glowing. Although this approach has been reported to be useful for localizing individual fluorophores in the XY-plane (a flat surface), meaningful 3D localization of biomolecules requires more precision in the Z-direction, or depth, than what is currently possible.

That is why a team of researchers from Tokyo Tech including Dr. Satoru Fujiyoshi, Nagoya University and Kyoto University delved deep into cryo-fluorescence microscopy to gain insight into the sources of error in such measurements and ways to correct them. The samples they used were DNA molecules of known length (10 nanometers) with different fluorophores on each end.

Initially, after obtaining images of both fluorophores and determining the distance between them to see if it corresponded to the length of the DNA molecules, there was significant error in their measurements. This was caused by the orientation of the fluorophore in 3D space, which was not always perfectly aligned with the plane of observation and instead was tilted or inclined. This is known as the "dipole orientation effect" and is a severe limiting factor in fluorescence microscopy. The effect is linked to the poor measurement precision in the Z-direction and, as the researchers demonstrated, can be corrected.

This is where measuring at cryogenic conditions comes into play. The molecules are instantly frozen in place, allowing for the high-precision 3D measurements that counter the dipole orientation effect. The precision (reproducibility) with which the fluorophores were located was ±1 nanometer on the observation plane and ±11 nanometers in the Z-direction, or depth, which is unprecedented for this type of microscopy. Through these corrections, the researchers managed to locate the fluorophores on the DNA molecules with nanometer accuracy (agreement with true value). "By correcting the dipole orientation effect, we managed to improve the localization accuracy of these fluorophores down to the nanometer level," remarks Dr. Fujiyoshi.

The research team will continue their work on this approach using a pair of fluorophores specifically designed for cryogenic conditions, with which they expect to obtain even better results. "This type of cryo-fluorescence microscopy will contribute to revealing the mechanisms and processes inside cells at a molecular level," concludes Dr. Fujiyoshi. Advances in microscopy will surely aid us in our quest to understand life and to advance the fields of medicine and bioengineering.
-end-


Tokyo Institute of Technology

Related Microscopy Articles from Brightsurf:

Ultracompact metalens microscopy breaks FOV constraints
As reported in Advanced Photonics, their metalens-integrated imaging device (MIID) exhibits an ultracompact architecture with a working imaging distance in the hundreds of micrometers.

Attosecond boost for electron microscopy
A team of physicists from the University of Konstanz and Ludwig-Maximilians-Universität München in Germany have achieved attosecond time resolution in a transmission electron microscope by combining it with a continuous-wave laser -- new insights into light-matter interactions.

Microscopy beyond the resolution limit
The Polish-Israeli team from the Faculty of Physics of the University of Warsaw and the Weizmann Institute of Science has made another significant achievement in fluorescent microscopy.

Quantum light squeezes the noise out of microscopy signals
Researchers at the Department of Energy's Oak Ridge National Laboratory used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

Limitations of super-resolution microscopy overcome
The smallest cell structures can now be imaged even better: The combination of two microscopy methods makes fluorescence imaging with molecular resolution possible for the first time.

High-end microscopy refined
New details are known about an important cell structure: For the first time, two Würzburg research groups have been able to map the synaptonemal complex three-dimensionally with a resolution of 20 to 30 nanometres.

Developing new techniques to improve atomic force microscopy
Researchers from the University of Illinois at Urbana-Champaign have developed a new method to improve the noise associated with nanoscale chemical imaging using atomic force microscopy.

New discovery advances optical microscopy
New Illinois ECE research is advancing the field of optical microscopy, giving the field a critical new tool to solve challenging problems across many fields of science and engineering including semiconductor wafer inspection, nanoparticle sensing, material characterization, biosensing, virus counting, and microfluidic monitoring.

New microscopy method provides unprecedented look at amyloid protein structure
Neurodegenerative diseases such as Alzheimer's and Parkinson's are often accompanied by amyloid proteins in the brain that have become clumped or misfolded.

Novel 3D imaging technology makes fluorescence microscopy more efficient
A research team led by Dr Kevin Tsia from the University of Hong Kong (HKU), developed a new optical imaging technology -- Coded Light-sheet Array Microscopy (CLAM) -- which can perform 3D imaging at high speed, and is power efficient and gentle to preserve the living specimens during scanning at a level that is not achieved by existing technologies.

Read More: Microscopy News and Microscopy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.