Replacing coal with gas or renewables saves billions of gallons of water

October 21, 2019

DURHAM, N.C. - The ongoing transition from coal to natural gas and renewables in the U.S. electricity sector is dramatically reducing the industry's water use, a new Duke University study finds.

"While most attention has been focused on the climate and air quality benefits of switching from coal, this new study shows that the transition to natural gas - and even more so, to renewable energy sources - has resulted in saving billions of gallons of water," said Avner Vengosh, professor of geochemistry and water quality at Duke's Nicholas School of the Environment.

These savings in both water consumption and water withdrawal have come despite the intensification of water use associated with fracking and shale gas production, the new study shows.

"For every megawatt of electricity produced using natural gas instead of coal, the amount of water withdrawn from local rivers and groundwater is reduced by 10,500 gallons, the equivalent of a 100-day water supply for a typical American household," said Andrew Kondash, a postdoctoral researcher at Duke, who led the study as part of his doctoral dissertation under Vengosh.

Water consumption - the amount of water used by a power plant and never returned to the environment - drops by 260 gallons per megawatt, he said.

At these rates of reduction, if the rise of shale gas as an energy source and the decline of coal continues through the next decade, by 2030 about 483 billion cubic meters of water will be saved each year, the Duke study predicts.

If all coal-fired power plants are converted to natural gas, the annual water savings will reach 12,250 billion gallons - that's 260% of current annual U.S. industrial water use.

Although the magnitude of water use for coal mining and fracking is similar, cooling systems in natural gas power plants use much less water in general than those in coal plants. That can quickly add up to substantial savings, since 40% of all water use in the United States currently goes to cooling thermoelectric plants, Vengosh noted.

"The amount of water used for cooling thermoelectric plants eclipses all its other uses in the electricity sector, including for coal mining, coal washing, ore and gas transportation, drilling and fracking," he said.

Even further savings could be realized by switching to solar or wind energy. The new study shows that the water intensity of these renewable energy sources, as measured by water use per kilowatt of electricity, is only 1% to 2% of coal or natural gas's water intensity.

"Switching to solar or wind energy would eliminate much of the water withdrawals and water consumption for electricity generation in the U.S.," Vengosh said.

Natural gas overtook coal as the primary fossil fuel for electricity generation in the United States in 2015, mainly due to the rise of unconventional shale gas exploration. In 2018, 35.1% of U.S. electricity came from natural gas, while 27.4% came from coal, 6.5% came from wind energy, and 2.3% came from solar energy, according to the U.S. Energy Information Administration (EIA).
-end-
Dalia Patiño-Echeverri, Gendell Associate Professor of Energy Systems at Duke's Nicholas School, co-authored the study with Kondash and Vengosh.

They published their peer-reviewed paper Oct. 14 in the open access journal Environmental Research Letters.

Funding for the study came from a National Science Foundation grant (#EAR-1441497) and the Duke University Energy Initiative.

CITATION: "Quantification of the Water-Use Reduction Associated with the Transition from Coal to Natural Gas in the U.S. Electricity Sector," Andrew J. Kondash, Dalia Patiño-Echeverri and Avner Vengosh; Oct. 14, 2019, Environmental Research Letters. DOI: https://doi.org/10.1088/1748-9326/ab4d71

Duke University

Related Natural Gas Articles from Brightsurf:

Study reveals how to improve natural gas production in shale
A new hydrocarbon study contradicts conventional wisdom about how methane is trapped in rock, revealing a new strategy to more easily access the valuable energy resource.

A new material for separating CO2 from industrial waste gases, natural gas, or biogas
With the new material, developed at the University of Bayreuth, the greenhouse gas carbon dioxide (CO2) can be specifically separated from industrial waste gases, natural gas, or biogas, and thereby made available for recycling.

Study of natural gas flaring finds high risks to babies
Researchers from USC and UCLA have found that exposure to flaring -- the burning off of excess natural gas -- at oil and gas production sites is associated with 50% higher odds of preterm birth, compared with no exposure.

Sweet or sour natural gas
Natural gas that contains larger amounts of hydrogen sulfide (H(2)S) and carbon dioxide (CO(2)) is termed sour gas.

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.

Effects of natural gas assessed in study of shale gas boom in Appalachian basin
A new study estimated the cumulative effects of the shale gas boom in the Appalachian basin in the early 2000s on air quality, climate change, and employment.

The uncertain role of natural gas in the transition to clean energy
A new MIT study examines the opposing roles of natural gas in the battle against climate change -- as a bridge toward a lower-emissions future, but also a contributor to greenhouse gas emissions.

Natural-gas leaks are important source of greenhouse gas emissions in Los Angeles
Liyin He, a Caltech graduate student, finds that methane in L.A.'s air correlates with the seasonal use of gas for heating homes and businesses

Enhanced natural gas storage to help reduce global warming
Researchers have designed plastic-based materials that can store natural gas more effectively.

Natural gas storage research could combat global warming
To help combat global warming, a team led by Dr.

Read More: Natural Gas News and Natural Gas Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.