How do snakes 'see' in the dark? Researchers have an answer

October 21, 2020

Certain species of snake - think pit vipers, boa constrictors and pythons, among others - are able to find and capture prey with uncanny accuracy, even in total darkness. Now scientists have discovered how these creatures are able to convert the heat from organisms that are warmer than their ambient surroundings into electrical signals, allowing them to "see" in the dark.

The work, published in the journal >Matter, provides a new explanation for how that process works, building upon the researchers' previous work to induce pyroelectric qualities in soft materials, allowing them to generate an electric charge in response to mechanical stress.

Researchers have known electrical activity was likely to be involved in allowing the snakes to detect prey with such exceptional skill, said Pradeep Sharma, M.D. Anderson Chair Professor of mechanical engineering at the University of Houston and corresponding author for the paper. But naturally occurring pyroelectric materials are rare, and they are usually hard and brittle. The cells in the pit organ - a hollow chamber enclosed by a thin membrane, known to play a key role in allowing snakes to detect even small temperature variations - aren't pyroelectric materials, said Sharma, who also is chairman of the Department of Mechanical Engineering at UH.

But when he and colleagues
"We realized that there is a mystery going on in the snake world," he said. "Some snakes can see in total darkness. It would be easily explained if the snakes had a pyroelectric material in their bodies, but they do not. We realized that the principle behind the soft material we had modeled probably explains it."

Not all snakes have the ability to produce a thermal image in the dark. But those with a pit organ are able to use it as an antenna of sorts to detect the infrared radiation emanating from organisms or objects that are warmer than the surrounding atmosphere. They then process the infrared radiation to form a thermal image, although the mechanism by which that happened hasn't been clear.

Sharma and his colleagues determined that the cells inside the pit organ membrane have the ability to function as a pyroelectric material, drawing upon the electrical voltage that is found in most cells. Through modeling, they used their proposed mechanism to explain previous experimental findings related to the process.

"The fact that these cells can act like a pyroelectric material, that's the missing connection to explain their vision," Sharma said.

This work was part of the Ph.D. dissertation of Faezeh Darbaniyan, first author on the paper. Additional researchers on the project include Kosar Mozaffari, a student at UH, and Professor Liping Liu of Rutgers University.

The work explains the mechanism by which the cells are able to take on pyroelectric properties, although questions remain, including how the proposed mechanism is related to the role played by the increased number of ion channels found in TRPA1 proteins. TRPA1 proteins are more abundant in the cells of pit-organ snakes than in non-pit snakes.

"Our mechanism is very robust and simple. It explains quite a lot," Sharma said. "At the same time, it is undeniable these channels play a role as well, and we are not yet sure of the connection."
-end-


University of Houston

Related Organisms Articles from Brightsurf:

To push or to pull? How many-limbed marine organisms swim
Couinter-intuitively, small marine animals don't use their limbs or propulsors to push themselves through the water while swimming.

Identical evolution of isolated organisms
Palaeontologists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the University of Calgary in Canada have provided new proof of parallel evolution: conodonts, early vertebrates from the Permian period, adapted to new habitats in almost identical ways despite living in different geographical regions.

The EU not ready for the release of Gene drive organisms into the environment
Gene drive organisms (GDOs) have been suggested as an approach to solve some of the most pressing environmental and public health issues.

Tiny marine organisms as the key to global cycles
Marine microorganisms play a very important role in global cycles such as of the uptake of carbon dioxide from the atmosphere.

Why organisms shrink
Everyone is talking about global warming. A team of paleontologists at GeoZentrum Nordbayern at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has recently investigated how prehistoric organisms reacted to climate change, basing their research on belemnites.

The effects of microplastics on organisms in coastal areas
Microplastics (plastic particles under 5 mm) are an abundant type of debris found in salt and freshwater environments.

Climate change is reshaping communities of ocean organisms
Climate change is reshaping communities of fish and other sea life, according to a pioneering study on how ocean warming is affecting the mix of species.

Fungicides as an underestimated hazard for freshwater organisms
Large amounts of fungicides, used in agriculture, leak into nearby surface waters.

FEFU scientist reported on concentration of pesticides in marine organisms
According to ecotoxicologist from Far Eastern Federal University (FEFU), from the 90s and during 2000s in the tissues of Russian Far Eastern mussels the concentration of organochlorine pesticides (OCPs) that had been globally used in agriculture in the mid-twentieth century has increased about ten times.

How genes interact to build tissues and organisms
A group of scientists at the National Centre for Genomic Analysis (CNAG-CRG) from the Centre for Genomic Regulation (CRG), in Barcelona, Spain, led by Holger Heyn, developed a new computational tool, based on the mathematical Graph theory, to infer global, large-scale regulatory networks, from healthy and pathological organs, such as those affected by diabetes or Alzheimer's disease.

Read More: Organisms News and Organisms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.