Common genetic damages in non-dividing cells lead to the creation of mutant proteins

October 22, 2003

ATLANTA--Two types of DNA damage that frequently befall most cells on an everyday basis can lead to the creation of damaged proteins that may contribute to neurodegeneration, aging and cancer, according to research by scientists at Emory University School of Medicine, published in the October 23 issue of the journal Molecular Cell.

The investigators used e. coli cells as a model system to study specific kinds of genetic damages that occur in all non-dividing cells undergoing transcription -- the everyday activity in which cells produce the proteins necessary to carry out bodily processes. The vast majority of scientists studying genetic mutations have focused instead on the cell replication process, in which damaged and unrepaired DNA within multiplying cells can be copied before cells divide and passed along to a new generation of cells. Most of the cells within organisms are no longer replicating, however, and instead spend their time manufacturing proteins.

Paul W. Doetsch, PhD, professor of biochemistry at Emory University School of Medicine, lead author Damien Bregeon, PhD, an Emory postdoctoral fellow, and their colleagues discovered that in e.coli cells, two of the most frequently occurring spontaneous DNA damages that cells in all organisms are exposed to on a daily basis cause transcriptional mutagenesis (TM). TM occurs when cells with damaged DNA produce bad messages during transcription that lead to the creation of mutant proteins.

During transcription, cells make an RNA copy of the combinations of base sequences that make up the genes on the DNA molecule. This RNA copy serves as a blueprint for manufacturing particular proteins. One type of spontaneous genetic damage occurs in non-dividing cells when cytosine (C), one of the four amino-acid bases (A, T, G, and C) spontaneously changes to uracil (U). This common substitution causes genetic miscoding that can lead to TM and the manufacture of mutant proteins during transcription.

A second type of genetic damage is caused by 8-oxoguanine, another base substitution that frequently results from the formation of oxygen radicals during normal cellular metabolism.

"These base substitution errors have very important implications for the biological consequences of genetic damage in non-dividing cells," Dr. Doetsch points out. "In some cases this miscoding could cause a cell to manufacture a mutant protein that controls cell division, which could take the cell from a non-growth state to a growth state and contribute to malignant transformation in the case of mammalian cells. Transcriptional mutagenesis in neurons could lead to neurodegenerative diseases."

Scientists already have learned that some genetic damages may block the transcription process, which is a signal for DNA repair molecules to move in and correct the mistake. When the DNA repair machinery is defective, however, the non-dividing cells are capable of continuing transcription despite the erroneous coding messages.

The Emory scientists present direct evidence that mutated proteins can be manufactured through this transcription pathway. They analyzed cells that were completely normal with respect to their DNA repair mechanisms as well as cells with various components of their DNA repair machinery eliminated. For some of the damages, when the repair machinery was intact, TM was very low, indicating that the purpose of DNA repair systems in non-dividing cells is to eliminate TM, Dr. Doetsch explains.

"Not only does this research show that genetic damages are capable of causing TM, it also identifies specific components of the cellular machinery whose job it is to repair damage from uracil and 8-oxoguanine to prevent TM from occurring," Dr. Doetsch explains. "The extent to which TM might occur for different kinds of genetic damages will depend on the cells' ability to repair damage before the transcriptional errors occur. This research also may allow us to devise explanations for physiological changes that occur in non-dividing cells exposed to damaging environmental agents.

"A number of studies, culminating in this one, show that DNA damages leading to TM are an important event that may account for the deleterious effects of unrepaired genetic damage. Although our study was in e.coli, very similar systems operate to repair genetic damage in human cells, thus this is a very important model for helping understand the mechanisms in non-dividing cells that can cause the manufacture of mutant proteins as a result of genetic damage to cells, says Dr. Doetsch."

Other contributors to the research were Bernard Weiss, PhD, Emory professor of pathology and laboratory medicine, Zara A. Doddridge, PhD, Emory postdoctoral fellow, and Ho Jin You, MD, PhD, from the Department of Pharmacology at Chosun University Medical School in the Republic of Korea.
-end-


Emory University Health Sciences Center

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.