A new relationship between brain derived neurotrophic factor and inflammatory signaling

October 22, 2008

(Boston)-In the October 14th edition of Science Signaling researchers at Boston University School of Medicine (BUSM), The Children's Hospital of Philadelphia/University of Pennsylvania School of Medicine and The University of Colorado Denver School of Medicine have shown that the development of epilepsy in adult rats is linked to functional changes in the expression of alpha 1 containing GABA-A receptors, the main inhibitory neurotransmitter receptor in the brain, that may be dependent upon BDNF-induced activation of the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway. Activation of the JAK/STAT pathway has previously been shown to be dependent upon cytokines and is implicated in a large number of inflammatory diseases.

The multiple subunits of the GABA-A receptor show developmental and region specific expression in the brain and produce a diverse set of functional receptor isoforms. Drs. Shelley Russek, a molecular neuroscientist/pharmacologist from Boston University School of Medicine and Dr. Amy Brooks-Kayal, a pediatric neurologist researcher from the University of Colorado Denver School of Medicine, believe that changes in inhibitory receptors in a portion of the brain known as the dentate gyrus may be crtically important to the development of temporal lobe epilepsy, the most common type of epilepsy in children and adults. Decrease of GABA-A receptors containing alpha 1 subunits at the synapse, and increase of receptors containing alpha 4, has been associated with spontaneous seizures. The senior authors recent publication associates the marked rise in BDNF that accompanies prolonged seizures with a specific decrease in the levels of alpha 1 that is reversed upon in vivo delivery of a JAK/STAT pathway inhibitor. Alpha 1 gene regulation is dependent upon the induction of a transcriptional repressor called inducible cAMP early repressor (ICER) that binds to the alpha 1 gene in coordination with the cAMP regulatory element binding protein (CREB).

Previous research from the laboratories of Russek and Brooks-Kayal reported that BDNF increases the abundance of the alpha 4 subunit of the GABA-A receptor independent of JAK/STAT signaling and dependent upon mitogen activating protein kinases (MAPKs). Taken together with the latest results, BDNF acts through at least two distinct pathways to influence GABA-mediated inhibition in the brain. "Our identification of signaling pathways regulating the most abundant form of synaptic GABA-A receptors in the central nervous system may lead to the development of novel molecular therapies for multiple disorders including epilepsy, given that changes in their expression are also associated with alcoholism, anxiety and stress," states Dr. Russek.

An estimated 400,000 Americans have temporal lobe epilepsy - a neurological impairment that includes both psychopathology and altered brain physiology. Onset of this form of epilepsy in some adults and children can be linked to an initial brain injury or systemic infection. However multiple cases are without such associations and are not treatable by traditional medical therapies.
-end-
The National Institutes of Health and the American Epilepsy Society provide grant support that funds the Russek and Brooks-Kayal collaborative research effort.

Boston University

Related Epilepsy Articles from Brightsurf:

Focal epilepsy often overlooked
Having subtler symptoms, a form of epilepsy that affects only one part of the brain often goes undiagnosed long enough to cause unexpected seizures that contribute to car crashes, a new study finds.

Antibodies in the brain trigger epilepsy
Certain forms of epilepsy are accompanied by inflammation of important brain regions.

Breaching the brain's defense causes epilepsy
Epileptic seizures can happen to anyone. But how do they occur and what initiates such a rapid response?

Using connectomics to understand epilepsy
Abnormalities in structural brain networks and how brain regions communicate may underlie a variety of disorders, including epilepsy, which is one focus of a two-part Special Issue on the Brain Connectome in Brain Connectivity, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.

Epilepsy: Triangular relationship in the brain
When an epileptic seizure occurs in the brain, the nerve cells lose their usual pattern and fire in a very fast rhythm.

How concussions may lead to epilepsy
Researchers have identified a cellular response to repeated concussions that may contribute to seizures in mice like those observed following traumatic brain injury in humans.

Understanding epilepsy in pediatric tumors
A KAIST research team led by Professor Jeong Ho Lee of the Graduate School of Medical Science and Engineering has recently identified a neuronal BRAF somatic mutation that causes intrinsic epileptogenicity in pediatric brain tumors.

Can medical marijuana help treat intractable epilepsy?
A new British Journal of Clinical Pharmacology review examines the potential of medicinal cannabis -- or medical marijuana -- for helping patients with intractable epilepsy, in which seizures fail to come under control with standard anticonvulsant treatment.

Fertility rates no different for women with epilepsy
'Myth-busting' study among women with no history of infertility finds that those with epilepsy are just as likely to become pregnant as those without.

Do women with epilepsy have similar likelihood of pregnancy?
Women with epilepsy without a history of infertility or related disorders who wanted to become pregnant were about as likely as their peers without epilepsy to become pregnant.

Read More: Epilepsy News and Epilepsy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.