Dealing with the unexpected

October 22, 2010

To regain balance from an unexpected slip on the ice can require an abundance of rapid movement, but conscious thought isn't part of the equation.

Or when eating or talking over dinner, no one thinks about altering his breathing even if the food is hotter than expected.

Life is full of unexpected interruptions to rhythmic behaviors that require the flexibility to make subtle to dramatic adjustments, says Hillel Chiel, professor of biology at Case Western Reserve University. And we just do them.

But, we don't know how we deal with the unexpected.

Chiel and Peter Thomas, assistant professor of mathematics in the College of Arts and Sciences, will try to learn how we and, for that matter, all animals rapidly and robustly adjust rhythmic behaviors.

The National Science Foundation gave the researchers a $500,000 grant to make progress understanding this mystery.

The ability to make instant adjustments is coveted. Rescue robots built with this flexibility could avoid becoming trapped while crawling through collapsed mines or buildings. And, while mind-controlled prosthetics would be a boon to the paralyzed, the ability of the prosthetics to adjust to real world interruptions without being prodded by thoughts would make them even better.

Chiel and Thomas won't start by investigating humans but the lowly sea slug and how it adjusts its eating to changes in food.

"One of the beauties of the sea slug is it has only a few dozen cells in the brain generating rhythmic activity, combining robustness and flexibility," Thomas said.

The researchers and graduate student Kendrick Shaw will use ideas from dynamical systems theory that were first developed to explain the movement of planets to build mathematical models to explain how the slug can rapidly adjust as it tries to swallow seaweed, which varies in shape and toughness from bite to bite.

Planetary movements, once thought mysterious, obey Newton's laws of motion. Dynamical systems theory was developed to predict how a system will move -- for example, the planets -- given rules governing the system's rate of change. If successful, the researchers will develop "laws of motion" describing how patterns of activity in the nervous system of the slug change over time.

The results of their work will help us understand how animals and ultimately humans can quickly cope when the unexpected happens, and help create artificial devices that may be better at expecting the unexpected.
-end-


Case Western Reserve University

Related Planets Articles from Brightsurf:

Stars and planets grow up together as siblings
ALMA shows rings around the still-growing proto-star IRS 63

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

Some planets may be better for life than Earth
Researchers have identified two dozen planets outside our solar system that may have conditions more suitable for life than our own.

Fifty new planets confirmed in machine learning first
Fifty potential planets have had their existence confirmed by a new machine learning algorithm developed by University of Warwick scientists.

Rogue planets could outnumber the stars
An upcoming NASA mission could find that there are more rogue planets - planets that float in space without orbiting a sun - than there are stars in the Milky Way, a new study theorizes.

Could mini-Neptunes be irradiated ocean planets?
Many exoplanets known today are ''super-Earths'', with a radius 1.3 times that of Earth, and ''mini-Neptunes'', with 2.4 Earth radii.

As many as six billion Earth-like planets in our galaxy, according to new estimates
There may be as many as one Earth-like planet for every five Sun-like stars in the Milky way Galaxy, according to new estimates by University of British Columbia astronomers using data from NASA's Kepler mission.

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.

Read More: Planets News and Planets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.