Nav: Home

Breast cancer scans possible with a 25 times reduced radiation dose

October 22, 2012

Scientists have developed a way to produce three-dimensional X-ray images of the breast at a radiation dose that is lower than the 2D radiographies used in clinics today. The new method enables the production of 3D diagnostic computed tomography (CT) images with a spatial resolution 2-3 times higher than present hospital scanners, but with a radiation dose that is about 25 times lower. This breakthrough has the potential to overcome the main obstacle limiting conventional CT imaging of the breast: the high radiosensitivity of the breast glandular tissue. Synchrotron X-rays at the Medical station of the ESRF have been used for testing the technique which, once deployed in hospitals, will make CT scans a diagnostic tool to complement dual view mammography.

The results of this innovative method are published in the online Early Edition of the Proceedings of the National Academy of Sciences (PNAS) of week 22 October 2012.

The multidisciplinary team comprised physicists, radiologists and mathematicians from the European Synchrotron Radiation Facility ESRF (Grenoble, France), the Ludwig Maximilians University in Munich (LMU, Cluster of Excellence MAP) and the University of California at Los Angeles (UCLA). The first authors are Yunzhe Zhao of UCLA and Emmanuel Brun of the LMU/ESRF.

Early detection largely contributes to an improved prognosis and results in reduced breast cancer mortality. The breast cancer screening method typically used today is "dual-view digital mammography". The limitation is that it only provides two images of the breast tissue, which can explain why 10 percent to 20 percent of breast tumours are not detectable on mammograms. Mammograms can also sometimes appear abnormal, when no breast cancers are actually present.

Computed tomography (CT), an X-ray technique that allows a precise 3D visualization of the human body organs, cannot be routinely applied in breast cancer diagnosis because the risk of long-term effects in radiosensitive organs like the breast is considered too high.

Recognizing these limitations, scientists went in a new direction. CT scans for early detection of breast cancer may now become possible thanks to the combination of three ingredients: high energy X-rays, a special detection method called "phase contrast imaging" and the use of a sophisticated novel mathematical algorithm, known as "equally sloped tomography" (EST), to reconstruct the CT images from X-ray data. Tissues are more transparent to high energy X-rays and therefore less dose is deposited (a factor of 6 in radiation dose reduction). Phase contrast imaging, mastered by the ESRF and the LMU-MAP teams, allows producing images with much less X-rays to obtain the same image contrast. Finally the EST method, originally developed by researchers at UCLA, needs 4 times less radiation to obtain the same image quality.

The team X-rayed a human breast at multiple different angles using phase contrast tomography and applied the EST algorithm to 512 images to produce higher resolution 3-D images of the organ than ever before and at a lower dose than a mammogram. In a blind evaluation, five independent radiologists from the LMU ranked the generated images as having the highest sharpness, contrast, and overall image quality compared to 3-D images of breast tissue created through other standard methods.

"This new technique can open up the doors to the clinical use of computed tomography in the breast diagnosis, which would be a powerful tool to fight even better and earlier against breast cancer", says Prof. Maximilian Reiser, Director of the Radiology Department of the LMU, which provided the medical expertise for this research. "This result has been obtained thanks to the synergy of the expertise by researchers from very different disciplines. These high-quality X-ray CT images at high energies are the result of a 10-year effort at the ESRF" says Alberto Bravin, head of the ESRF medical research laboratory who led the team in Grenoble. "After dramatically reducing the dose delivered during the examination of the breast, our next objective is to develop this technique in the early visualization of other human diseases and to work towards its clinical implementation." adds Paola Coan, Professor of X-ray imaging at LMU and member of "Munich-Centre for Advanced Photonics (MAP)" who led the group from Munich.

"Three-dimensional reconstructions, like the ones created in this research, are produced using sophisticated software and a powerful computer that can combine many images into one 3-D image, much like slices of an orange. By rethinking the mathematic equations of the software in use today" says Jianwei (John) Miao, UCLA professor of physics and astronomy and researcher with the California NanoSystems Institute at UCLA "we developed a more powerful algorithm that requires fewer slices to get a clearer 3-D picture".

Today, the new technology is in the research phase and will not be available to patients for some time. To be implemented in clinics, it needs an X-ray source small enough to become commonly used for breast cancer screening. "Many research groups are actively working to develop this device and once this hurdle is cleared, the new X-ray technique is poised to make a big impact on society", concludes Emmanuel Brun.
-end-


European Synchrotron Radiation Facility

Related Breast Cancer Articles:

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
More Breast Cancer News and Breast Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...