Nav: Home

Astronomers study 2 million light year 'extragalactic afterburner'

October 22, 2012

Blasting over two million lights years from the centre of a distant galaxy is a supersonic jet of material that looks strikingly similar to the afterburner flow of a fighter jet, except in this case the jet engine is a supermassive black hole and the jet material is moving at nearly the speed of light.

Research published over the weekend in the Astrophysical Journal Letters shows the galaxy-scale jet to have bright and dark regions, similar to the phenomenon in an afterburner exhaust called 'shock diamonds.'

A new image of the previously studied jet reveals regularly spaced areas that are brighter than the rest of the jet in a pattern that echoes the way the afterburner from a jet engine has brighter diamond-shaped areas in its general glow.

"One intriguing possibility is that the pattern we see in this cosmic jet is produced in the same way as the pattern in the exhaust from fighter jet engines," said Dr Leith Godfrey, from the Curtin University node of The International Centre for Radio Astronomy Research.

Dr Godfrey said the jets are produced when material falls onto a supermassive black hole at the centre of a galaxy, but many details beyond that remain unknown.

"Massive jets like this one have been studied for decades, since the beginning of radio astronomy, but we still don't understand exactly how they are produced or what they're made of," he said.

"If the brighter patches are caused by the same process in astronomical jets as they are in earthly jet engines, then the distance between them can give us important information about the power of the jet and the density of the surrounding space."

Dr Godfrey said that jets like the one he studied are the largest objects in the Universe, about 100 times larger than the Milky Way.

"If we want to understand how galaxies form and grow, we need to understand these jets. They are extremely powerful and are believed to stop stars forming in their parent galaxy, limiting how big the galaxies can grow and effecting how the Universe looks today," he said.

"This new image of the jet shows detail we've never seen before and the pattern we revealed provides a clue to how jets like this one work," said Dr Jim Lovell, a co-author from the University of Tasmania.

"This particular jet emits a lot of X-rays, which is hard to explain with our current models. Our new find is a step forward in understanding how these giant objects emit so much X-Ray radiation, and indirectly, will help us understand how the jet came to be."

Dr Lovell said that the image had been taken using the CSIRO managed Australia Telescope Compact Array radio telescope in New South Wales.
-end-
ICRAR is a joint venture between Curtin University and The University of Western Australia providing research excellence in the field of radio astronomy.

International Centre for Radio Astronomy Research

Related Supermassive Black Hole Articles:

ESO telescope sees star dance around supermassive black hole, proves Einstein right
Observations made with ESO's Very Large Telescope (VLT) have revealed for the first time that a star orbiting the supermassive black hole at the centre of the Milky Way moves just as predicted by Einstein's general theory of relativity.
ALMA resolves gas impacted by young jets from supermassive black hole
Astronomers obtained the first resolved image of disturbed gaseous clouds in a galaxy 11 billion light-years away by using the Atacama Large Millimeter/submillimeter Array (ALMA).
Supermassive black holes shortly after the Big Bang: How to seed them
They are billions of times larger than our Sun: how is it possible that supermassive black holes were already present when the Universe was 'just' 800 million years old?
Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Pair of supermassive black holes discovered on a collision course
Astronomers have spotted a pair of supermassive black holes on a collision course in a galaxy 2.5 billion light-years away.
Researchers decipher the history of supermassive black holes in the early universe
Astrophysicists at Western University have found evidence for the direct formation of black holes that do not need to emerge from a star remnant.
Fast and furious: detection of powerful winds driven by a supermassive black hole
This is the first publication based entirely on data obtained with EMIR, an instrument developed in the Instituto de Astrofísica de Canarias (IAC) which analyses the infrared light gathered by the Gran Telescopio Canarias (GTC) from the Roque de los Muchachos Observatory (Garafía, La Palma).
Cool, nebulous ring around Milky Way's supermassive black hole
New ALMA observations reveal a never-before-seen disk of cool, interstellar gas wrapped around the supermassive black hole at the center of the Milky Way.
Astronomers discover 83 supermassive black holes in the early universe
Astronomers from Japan, Taiwan and Princeton University have discovered 83 quasars powered by supermassive black holes that were formed when the universe was only 5 percent of its current age.
More Supermassive Black Hole News and Supermassive Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.