Nav: Home

Breakthrough technique images breast tumors in 3-D with great clarity, reduced radiation

October 22, 2012

Like cleaning the lenses of a foggy pair of glasses, scientists are now able to use a technique developed by UCLA researchers and their European colleagues to produce three-dimensional images of breast tissue that are two to three times sharper than those made using current CT scanners at hospitals. The technique also uses a lower dose of X-ray radiation than a mammogram.

These higher-quality images could allow breast tumors to be detected earlier and with much greater accuracy. One in eight women in the United States will be diagnosed with breast cancer during her lifetime.

The research is published the week of Oct. 22 in the early edition of the journal Proceedings of the National Academy of Sciences.

The most common breast cancer screening method used today is called dual-view digital mammography, but it isn't always successful in identifying tumors, said Jianwei (John) Miao, a UCLA professor of physics and astronomy and researcher with the California NanoSystems Institute at UCLA.

"While commonly used, the limitation is that it provides only two images of the breast tissue, which can explain why 10 to 20 percent of breast tumors are not detectable on mammograms," Miao said. "A three-dimensional view of the breast can be generated by a CT scan, but this is not frequently used clinically, as it requires a larger dose of radiation than a mammogram. It is very important to keep the dose low to prevent damage to this sensitive tissue during screening."

Recognizing these limitations, the scientists went in a new direction. In collaboration with the European Synchrotron Radiation Facility in France and Germany's Ludwig Maximilians University, Miao's international colleagues used a special detection method known as phase contrast tomography to X-ray a human breast from multiple angles.

They then applied equally sloped tomography, or EST -- a breakthrough computing algorithm developed by Miao's UCLA team that enables high-quality image-reconstruction -- to 512 of these images to produce 3-D images of the breast at a higher resolution than ever before. The process required less radiation than a mammogram.

In a blind evaluation, five independent radiologists from Ludwig Maximilians University ranked these images as having a higher sharpness, contrast and overall image quality than 3-D images of breast tissue created using other standard methods.

"Even small details of the breast tumor can be seen using this technique," said Maximilian Reiser, director of the radiology department at Ludwig Maximilians University, who contributed his medical expertise to the research.

The technology commonly used today for mammograms or imaging a patient's bones measures the difference in an X-ray's intensity before and after it passes through the body. But the phase contrast X-ray tomography used in this study measures the difference in the way an X-ray oscillates through normal tissue rather than through slightly denser tissue like a tumor or bone. While a very small breast tumor might not absorb many X-rays, the way it changes the oscillation of an X-ray can be quite large, Miao said. Phase contrast tomography captures this difference in oscillation, and each image made using this technique contributes to the overall 3-D picture.

The computational algorithm EST developed by Miao's UCLA team is a primary driver of this advance. Three-dimensional reconstructions, like the ones created in this research, are produced using sophisticated software and a powerful computer to combine many images into one 3-D image, much like various slices of an orange can be combined to form the whole. By rethinking the mathematic equations of the software in use today, Miao's group developed a more powerful algorithm that requires fewer "slices" to get a clearer overall 3-D picture.

"The technology used in mammogram screenings has been around for more than 100 years," said Paola Coan, a professor of X-ray imaging at Ludwig Maximilians University. "We want to see the difference between healthy tissue and the cancer using X-rays, and that difference can be very difficult to see, particularly in the breast, using standard techniques. The idea we used here was to combine phase contrast tomography with EST, and this combination is what gave us much higher quality 3-D images than ever before."

While this new technology is like a key in a lock, the door will only swing open -- bringing high-resolution 3-D imaging from the synchrotron facility to the clinic -- with further technological advances, said Alberto Bravin, managing physicist of the biomedical research laboratory at the European Synchrotron Radiation Facility. He added that the technology is still in the research phase and will not be available to patients for some time.

"A high-quality X-ray source is an absolute requirement for this technique," Bravin said. "While we can demonstrate the power of our technology, the X-ray source must come from a small enough device for it to become commonly used for breast cancer screening. Many research groups are actively working to develop this smaller X-ray source. Once this hurdle is cleared, our research is poised to make a big impact on society."
-end-
These results represent the collaborative efforts of senior authors Miao, Bravin and Coan. Significant contributions were provided by co-first authors Yunzhe Zhao, a recent UCLA doctoral graduate in Miao's laboratory, and Emmanuel Brun, a scientist working with Bravin and Coan. Other co-authors included Zhifeng Huang of UCLA and Aniko Sztrókay, Paul Claude Diemoz, Susanne Liebhardt, Alberto Mittone and Sergei Gasilov of Ludwig Maximilians University.

The research was funded by UC Discovery/Tomosoft Technologies; the National Institute of General Medical Sciences, a division of the National Institutes of Health; and the Deutsche Forschungsgemeinschaft-Cluster of Excellence Munich-Centre for Advanced Photonics.

UCLA is California's largest university, with an enrollment of more than 40,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and six faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

University of California - Los Angeles

Related Breast Cancer Articles:

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.
Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.
Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.
Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.
Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
More Breast Cancer News and Breast Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.