Nav: Home

Protein helps plants avoid accumulation of damaged chloroplasts

October 22, 2015

The identification of a protein that selectively clears damaged chloroplasts from plant cells reveals how plants maintain a "clean workshop" during the process of photosynthesis. Chloroplasts play an important role in transforming light into useable energy for plants, but when these energy powerhouses are damaged, they release harmful substances. When the plant detects this damage, signals are sent to genes involved in chloroplast function and stress adaptation. Some evidence suggests that plastid ferrochelatases 1 and 2 (FC1 and FC2), enzymes that convert protoporphyrin-IX (Proto) to heme, may play a role in the quality control of individual chloroplasts. Proto is a photosensitizing molecule that generates oxygen, which increases oxidative stress within cells. Jesse Woodson and colleagues therefore created two strains of mutant plants each lacking one of these enzymes and subjected the plants to varying doses of light to observe changes in their chloroplasts. After being in the dark for prolonged periods of time and then suddenly exposed to light, FC1 mutants and controls were able to green, but the FC2 strain did not. A closer look under the microscope revealed this strain had damaged chloroplasts. As well, there was accumulation of Proto and consequently an increased amount of oxygen and expression of oxidative stress responsive genes. The team then searched for additional mutations within the FC2 strain that could counter this effect, identifying Plant U-Box 4 (PUB4) E3 ubiquitin ligase, a regulatory protein involved in cell death and development. Tests of FC2 mutants that also had the PUB4 mutation revealed accumulated Proto and oxygen, but no degradation of the plants' chloroplasts, indicating that PUB4 plays a direct role in signaling chloroplast degradation. Looking closer at healthy plants, the researchers found that PUB4 plays a selective role in chloroplast quality control, further highlighting the function of this protein in reducing oxidative stress.
-end-
Article #12: "Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts," by J.D. Woodson; M.S. Joens; A.B. Sinson; J. Gilkerson; J.A. Fitzpatrick; J. Chory at The Salk Institute in La Jolla, CA; A.B. Sinson at University of California, San Diego in La Jolla, CA; J. Gilkerson at Howard Hughes Medical Institute in La Jolla, CA; P.A. Salomé; D. Weigel at Max Planck Institute for Developmental Biology in Tübingen, Germany; M.S. Joens; J.A. Fitzpatrick at Washington University School of Medicine in St. Louis, MO; J. Gilkerson at Shepherd University in Shepherdstown, WV; P.A. Salomé at University of California, Los Angeles in Los Angeles, CA.

American Association for the Advancement of Science

Related Protein Articles:

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.
Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.
A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.
A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.
Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.
A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.
A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.
Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.
Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.
Protein injections in medicine
One day, medical compounds could be introduced into cells with the help of bacterial toxins.
More Protein News and Protein Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.