Nav: Home

Probing the innards of stars

October 22, 2015

Studying starlight from red giants has provided insights into the makeup of a star's internal magnetic field - a region that has been notoriously hard to study. The technique applied here could be used to probe the internal magnetic fields in certain star types, providing a clearer picture of the influence of stellar magnetism on a star's evolution. While magnetic fields on the surfaces of stars can be observed, those within the star have so far remained out of reach. Recent studies with the Kepler satellite have identified red giant stars with mysteriously "dampened" internal activity, or vibrations. Here, Jim Fuller and colleagues showed it was possible to probe the interiors of these stars using asteroseismology, a technique that involves interpreting variations in light emitted from a star as due to sound waves from its interior. Based on their analysis, Fuller and colleagues say that the magnetic fields of the red giants they studied caused sound waves inside them to become trapped in the star's interior - an explanation for the mysterious damping of certain vibration modes in the Kepler observations. The study provides a plausible explanation for why some red giants have "depressed" vibration modes and will help scientists better understand the properties and evolution of stellar magnetic fields.
Article #7: "Asteroseismology can reveal strong internal magnetic fields in red giant stars," by J. Fuller; L. Bildsten at California Institute of Technology in Pasadena, CA; J. Fuller; M. Cantiello; L. Bildsten at University of California, Santa Barbara in Santa Barbara, CA; D. Stello at University of Sydney in Sydney, NSW, Australia; D. Stello at Aarhus University in Aarhus, Denmark; R.A. Garcia at CNRS in Gif-sur-Yvette, France; R.A. Garcia at Université Paris Diderot in Gif-sur-Yvette, France.

American Association for the Advancement of Science

Related Evolution Articles:

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.
Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.
How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.
Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.