Spatial navigation abnormalities could hint at Alzheimer's years before onset

October 22, 2015

While navigating a virtual maze, young adults at high genetic risk of Alzheimer's disease demonstrated reduced functioning of brain cells involved in spatial navigation, causing them to navigate the maze differently than controls, a new study finds. Identifying early biomarkers of the disease, such as abnormal grid cell functioning, could be a valuable step in the field of Alzheimer's research since the best hope for minimizing development of the disease lies in early intervention. Previous research reveals that Alzheimer's begins in a region of the brain called the entorhinal cortex (EC) long before symptoms appear; abnormalities can be observed in adults under the age of 30. Lukas Kunz et al. therefore measured the functioning of grid cells, a type of cell in the EC involved in spatial navigation, in young adults navigating a virtual maze. The researchers compared the performance of individuals with the APOE-ε4 gene, and thus at high risk of developing Alzheimer's, against control participants. While the high-risk group had similar spatial memory performance compared to controls, functional magnetic resonance imaging (fMRI) revealed that these individuals had significantly reduced grid cell functioning. This group also showed a reduced preference to navigate in the center of the virtual arena compared to control participants. Further analysis suggests that the high-risk group may be compensating for their abnormal grid-cell functioning by harnessing the hippocampus, another brain region associated with Alzheimer's disease, in order to maintain the same level of spatial memory performance seen in the control group. These differences in grid cell functioning, detectable through simple fMRI, could be used to identify those susceptible to developing Alzheimer's, although more long-term research is needed to confirm whether early reduced grid-cell functioning is directly related to disease development later in life.
Article #9: "Reduced grid-cell-like representations in adults at genetic risk for Alzheimer's disease," by L. Kunz; H. Lee; R. Stirnberg; T. Stöcker; P.C. Messing-Floeter; N. Axmacher at German Center for Neurodegenerative Diseases (DZNE) in Bonn, Germany; L. Kunz; M. Reuter; P.C. Messing-Floeter; J. Fell at University of Bonn in Bonn, Germany; T.N. Schröder; C.F. Doeller at Radboud University in Nijmegen, Netherlands; C. Montag; B. Lachmann; R. Sariyska at Ulm University in Ulm, Germany; N. Axmacher at Ruhr-University Bochum in Bochum, Germany.

American Association for the Advancement of Science

Related Disease Articles from Brightsurf:

CLCN6 identified as disease gene for a severe form of lysosomal neurodegenerative disease
A mutation in the CLCN6 gene is associated with a novel, particularly severe neurodegenerative disorder.

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.

Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.

Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).

30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.

Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.

Read More: Disease News and Disease Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to