Nav: Home

It takes a thief

October 22, 2015

The CRISPR/Cas9 protein system, which is central part to bacterial adaptive immunity, has soared to great prominence in recent years for its enormous potential as a genome editing tool. In studying this system, scientists have found it to be akin to a Russian doll in that the unlocking of one secret reveals another secret within. Jennifer Doudna, a biochemist with Berkeley Lab's Molecular Biophysics and Integrated Bioimaging (MBIB) division, who has been at the forefront of unlocking CRISPR/Cas secrets has just unlocked another. Working off data acquired at the Advanced Light Source, Doudna and her research group have discovered the structural basis by which bacteria are able to capture genetic information from viruses and other foreign invaders for use in their own immunological system.

"By studying X-ray crystal structures of Cas1 and Cas2 enzymes in Escherichia coli, we can now see how foreign DNA is manipulated and bent upon being captured by Cas1 and Cas2," Doudna says. "Knowing how Cas1 and Cas 2 function in bacterial genomes provides us with a possible mechanism for studying or correcting problems in human genomes."

Doudna, who also holds appointments with the University of California (UC) Berkeley's Department of Molecular and Cell Biology and Department of Chemistry, and is an investigator with the Howard Hughes Medical Institute (HHMI), is the corresponding author of a paper in Nature that describes this research. The paper is titled "Foreign DNA capture during CRISPR-Cas adaptive immunity." James Nuñez and Lucas Harrington, members of Doudna's research group are the lead authors. Other authors are Philip Kranzusch and Alan Engelman.

While we humans view bacteria as the enemy, bacteria have enemies too - viruses and invading strands of nucleic acid known as plasmids. To protect themselves, bacteria have developed an adaptive-type immune system that revolves around a unit of DNA known as CRISPR, which stands for Clustered Regularly Interspaced Short Palindromic Repeats. A CRISPR unit of DNA is made up of "repeat" elements, base-pair sequences ranging from 30 to 60 nucleotides in length, separated by "spacer" elements, variable sequences that are also from 30 to 60 nucleotides in length. The combination of CRISPR and CRISPR-associated - "Cas" - proteins, enable bacteria to convert spacers into customized RNA molecules that silence critical portions of a foreign invader's DNA. The CRISPR/Cas system also enables a bacterium to acquire immunity from similar invasions in the future by "remembering" prior infections based on the foreign DNA spacer elements integrated within the bacterium's CRISPR loci.

Recently Doudna and her group discovered that Cas1 and Cas2 are the only two proteins in the CRISPR/Cas system required for bacteria to "steal" and "memorize" the genetic information in foreign DNA, but how this task is accomplished remained unknown. Now, using the macromolecular crystallography beamline (8.3.1) at the ALS, which is a U.S. Department of Energy Office of Science user facility, Doudna and her group have discovered that Cas1 and Cas2 function as molecular rulers that will not only recognize foreign DNA but also perfectly measure the DNA during the stealing process.

"We knew from our previous work that Cas1 and Cas2 capture double-stranded DNA instead of single-stranded DNA, but what we didn't expect when we solved the crystal structure in E. coli was that the ends of the double-stranded DNA are being separated by Cas1," Nuñez says. "This is a critical finding because we now know we can program Cas1 and Cas2 with DNA substrates containing a central double-stranded DNA region and single-stranded DNA on the ends, and then perhaps insert these DNA substrates into specific sites along a target genome for editing purposes."
-end-
This research was primarily supported by grants from the National Science Foundation.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE/Lawrence Berkeley National Laboratory

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.