Study uses gene editing to take brakes off lab-based red blood cell production

October 22, 2015

BOSTON (Oct. 22, 2015) - Turning off a single gene leads to a roughly three-to-five-fold gain in the yield of laboratory methods for producing red blood cells from stem cells, according to a multi-institutional team led by researchers at Dana-Farber/Boston Children's Cancer and Blood Disorders Center. These findings, published in Cell Stem Cell, suggest a way to cost-effectively manufacture red blood cells from stem cells; the patients who could potentially benefit include those who cannot use blood currently available in blood banks.

Previous research has shown that it is possible to use various methods to force different kinds of stem cells to produce transfusion-grade red blood cells in a laboratory, but, at a cost between $8,000 and $15,000 per unit of blood, the processes are expensive. This is the first study to combine stem cells, powerful gene editing tools, and data from genome-wide association studies (GWAS).

The research team behind the Cell Stem Cell study--led by senior author and Dana-Farber/Boston Children's pediatric hematologist Vijay Sankaran, MD, PhD--homed in on their target gene, called SH2B3, after GWAS data revealed naturally occurring variations in the gene's sequence that reduce its activity result in increased red blood cell production.

"There's a variation in SH2B3 found in about 40 percent of people that leads to modestly higher red blood cell counts," Sankaran said. "But if you look at people with really high red blood cell levels, they often have rare SH2B3 mutations. That said to us that here is a target where you can partially or completely eliminate its function as a way of increasing red blood cells robustly.

"There are many patients with rare blood types or blood disorders who need very specific kinds of blood and cannot accept most donated blood," Sankaran continued. "Also, there are patients for whom there is a possibility of using red blood cells as a way of delivering therapies."

Sankaran and his collaborators--including study co-first authors Felix Giani, Claudia Fiorini, PhD, and Aoi Wakabayashi of Dana-Farber/Boston Children's--wanted to see if were possible to use SH2B3 as a target to genetically increase the yield of laboratory-based red blood cell production processes (as opposed to tweaking cells in culture by adding cytokines and other factors). To do, so, they first used RNA interference (RNAi, which silences gene expression) to turn down SH2B3 in donated adult, human, blood-forming stem cells (hematopoietic stem and progenitor cells, or HSPCs) and HSPCs from human umbilical cord blood.

The team's data confirmed that shutting off SH2B3 with RNAi skews an HSPC's profile of cell production to favor red blood cells. Adult and cord blood stem cells treated with RNAi produced three-to-five and five-to-seven times more red blood cells than controls, respectively. Using multiple tests, the team found that the red blood cells produced by RNAi were essentially indistinguishable from control cells.

Sankaran and his team recognized that their HSPC/RNAi approach would be very difficult to scale up to a level that could impact the clinical need for red blood cells. Thus, in a separate set of experiments, they used CRISPR gene editing to permanently shut off SH2B3 in human embryonic stem cell (hESC) lines, which can be readily renewed in a laboratory. They then treated the edited cells with a cocktail of factors known to encourage blood cell production. Under these conditions, the edited hESCs produced three times more red blood cells than controls. Again, the team could find no significant differences between red blood cells from the edited stem cells and controls.

Sankaran thinks that SH2B3's enforces some kind of upper limit on how much red blood cell precursors respond to calls for more red blood cell production.

"This is a nice approach because it removes the brakes that normally keep cells restrained and limit how much red blood cell precursors respond to different laboratory conditions," Sankaran explained.

He notes that in his vision, stem cells edited to keep SH2B3 turned off would be maintained in culture as a kind of cellular starter and used to produce red blood cells for treatment purposes; the edited stem cells themselves would never be used for direct treatment.

He also believes that with further development, the combination of CRISPR and hESCs could increase the yields and reduce the costs of producing red blood cell in the laboratory to the level where commercial-scale manufacture could be feasible.

"This is allowing us to get close to the cost of normal donor-derived blood units," he said. ""If we can get the costs down to about $2,000 per unit, that's a reasonable cost."
This study was supported by the National Heart, Lung and Blood Institute (grant number R01HL119099, P01HL032262), the National Institute of Diabetes and Digestive and Kidney Diseases (grant numbers F30DK103359, R01DK097768, P30DK049216, K08DK093705) and the National Institute of General Medical Sciences (grant numbers K99HG008399, K99HG008171).

About Dana-Farber/Boston Children's Cancer and Blood Disorders Center

The Dana-Farber/Boston Children's Cancer and Blood Disorders Center - the nation's #1 pediatric cancer program, according to US News & World Report 2015-16 -- brings together two internationally known research and teaching institutions that have provided comprehensive care for pediatric oncology and hematology patients since 1947. The Harvard Medical School affiliates share a clinical staff that delivers inpatient care and surgery at Boston Children's Hospital, outpatient oncology care at Dana-Farber Cancer Institute and outpatient blood disorders care at Boston Children's.

Dana-Farber Cancer Institute

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to