Nav: Home

Evaporation for review -- and with it global warming

October 22, 2015

The process of evaporation, one of the most widespread on our planet, takes place differently than we once thought - this has been shown by new computer simulations carried out at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw. The discovery has far-reaching consequences for, among others, current global climate models, where a key role is played by evaporation of the oceans.

They all evaporate: oceans and seas, microdroplets of fuel in engines and the sweat on our own skin. For every one of us evaporation is of paramount importance: it shapes the climate of the planet, it affects the cost of car travel, and is one of the most important factors controlling the temperature of the human body. So common is it that it seemed that evaporation was a phenomenon that had been stripped of any more secrets. In the renowned scientific journal Soft Matter physicists from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, Poland, prove that this belief was erroneous and the mechanism of evaporation must operate differently than had previously been assumed.

"Science copes badly with descriptions of processes occurring in nature. We are perfectly able to describe the states at the beginning of the process and at its end. But what happens in between? How does the given process really take place? For so many years we have been asking ourselves this question in relation to the phenomenon of evaporation - and we are coming to ever more interesting conclusions," says Prof. Robert Holyst (IPC PAS).

In scientific and technical deliberations we use the Hertz-Knudsen equation, known for over a hundred years, to describe the evaporation rate. What follows from it is quite an intuitive prediction: that at a given temperature the rate of evaporation of the liquid depends on how different the actual pressure at the surface is from the pressure which would be present if the evaporating liquid were to be in thermodynamic equilibrium with its environment.

"The further the system is from equilibrium, the more dynamically it should return to it. It's so intuitive! So we checked the Hertz-Knudsen equation - because we like to check. In order to do this we prepared exceptionally accurate computer simulations which allowed us for the first time to take a closer look at the process of evaporation," explains Dr. Marek Litniewski (IPC PAS).

Advanced computer simulations carried out using molecular dynamics showed that the values of some parameters describing evaporation are even several times larger than those predicted by the Hertz-Knudsen equation. However, an even more interesting effect was noted: the stream of gas being liberated from the surface of the liquid during evaporation changed very little despite significant fluctuations in pressure.

"There could only be one conclusion from this observation: the rate of evaporation and the vapour pressure, that is, the physical quantities that were previously considered to be closely related, were not so. For more than a century we had all been making a serious error in the theoretical description of the phenomenon of evaporation!," says Dr. Litniewski.

The hitherto model of evaporation was based on the principle of conservation of mass: the mass of molecules released from the surface of a liquid had to respectively increase the mass of the gas in its surroundings. Physicists from the IPC PAS noticed, however, that since the particles released from the surface have a certain velocity, in order to describe this phenomenon what should be applied is the principle of conservation of momentum.

"We realized that to some extent evaporation resembles shooting from a cannon: the missile flies in one direction, but the overall momentum of the system must be maintained, so the gun recoils in the opposite direction. The same happens with the molecules of evaporating liquid. Since there is an increase in momentum, there must be recoil, and if there is recoil, the pressure felt by the molecules on the surface of the liquid will be different," says Prof. Holyst.

The new computer simulations were also used to measure the velocities of the molecules released from the liquid surface. They proved to be small, of the order of hundreds of micrometres per second, which corresponds to only a few kilometres per hour. This fact means that practically any naturally occurring flow over the surface of the liquid has to strongly interfere with the evaporation process. The evaporation cannot thus be described by an equation derived for a very specific case, for liquid that is in thermodynamic equilibrium with the environment.

The discovery of the IPC PAS researchers is of the utmost importance for, among others, the understanding of the real mechanisms responsible for global warming. Contrary to common belief, the most abundant greenhouse gas in the atmosphere of our planet is not carbon dioxide but water vapour. At the same time, it is known that the speed of flow of air masses over the oceans can significantly exceed one hundred kilometres per hour and therefore they will certainly affect the rate of evaporation. The hitherto evaluation of the rate of evaporation of the oceans must therefore be subject to error, which will certainly affect the accuracy of the predictions of contemporary models of the Earth's climate.
-end-
The researchers from the IPC PAS are investigating evaporation in collaboration with the Institute of Physics of the Polish Academy of Sciences in Warsaw, where experiments are being carried out to verify the correctness of the simulations.

The Institute of Physical Chemistry of the Polish Academy of Sciences was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialise specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually.

Institute of Physical Chemistry of the Polish Academy of Sciences

Related Global Warming Articles:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.
Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.
Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.
Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.
Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.
Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.
Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.
Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.
Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.
Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.
More Global Warming News and Global Warming Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.