Nav: Home

Study finds key molecular mechanism regulating plant translational activity

October 22, 2015

Plants can't get up and run away when they're being attacked by insects or harsh weather conditions. So they need mechanisms to rapidly respond to a stressful event - being eaten by a bug, for example - and then quickly transition back to "normal" conditions when the stress level subsides.

In a paper published in the journal Cell, North Carolina State University researchers show how plants handle - at the molecular level - the release of ethylene, an important gaseous stress hormone that, among other functions, regulates plant growth and stimulates the fruit ripening process. The findings could pave the way to new techniques to engineer plants to produce better crops or to turn off certain genes.

In the paper, plant geneticists Anna Stepanova and Jose Alonso show that ethylene triggers a process that begins, but doesn't complete, one of the cell's most basic functions - gene expression.

At issue are the plant cell's transcription and translation processes, in which genetic instructions encoded in DNA are transcribed into messenger RNAs, which are then translated into amino acids to create proteins that carry out specific functions.

The researchers show that, when ethylene is perceived, transcription of certain genes that function as circuit breakers of ethylene signaling occurs, but protein production becomes restricted until ethylene is removed.

"Essentially, that means the messenger RNA is being made and stored, but the flow of information does not continue into protein synthesis," Stepanova said.

"This is a mechanism for the plant cell to respond very quickly to ethylene but then very rapidly return to normal when the hormone is withdrawn," Alonso added.

Specifically, the paper shows that a key signaling molecule, EIN2, is an essential component in the ethylene-response process. EIN2 protein binds to the messenger RNA of the ethylene circuit breaker EBF2, incapacitating its protein synthesis, and thus allowing for a full activation of plant ethylene responses.

Alonso and Stepanova say that although the results are specific to ethylene, the findings provide a blueprint for examining other plant hormones and their effects on genes.
-end-
NC State post-doctoral researchers Catharina Merchante and Javier Brumos are the paper's lead authors. Co-authors from NC State include research technician Jeonga Yun, bioinformatics Ph.D. student Qiwen Hu, former undergraduate interns Kristina Spencer and Paul Enriquez, and Dr. Steffen Heber, associate professor of computer science. Dr. Brad Binder from the University of Tennessee also contributed to the study.

The research was funded by the National Science Foundation and NC State.

Note to editors: An abstract of the paper follows.

"Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2"

Authors: Catharina Merchante, Javier Brumos, Jeonga Yun, Qiwen Hu, Kristina R. Spencer, Paul Enriquez, Steffen Heber, Anna Stepanova and Jose M. Alonso, North Carolina State University; Brad M. Binder, University of Tennessee

Published: Oct. 22, 2015 in Cell

Abstract: The central role of translation in modulating gene activity has long been recognized, yet the systematic exploration of quantitative changes in translation at a genomewide scale in response to a specific stimulus has only recently become technically feasible. Using the well-characterized signaling pathway of the phytohormone ethylene and plant-optimized genome-wide ribosome footprinting, we have uncovered a molecular mechanism linking this hormone's perception to the activation of a gene-specific translational control mechanism. Characterization of one of the targets of this translation regulatory machinery, the ethylene signaling component EBF2, indicates that the signaling molecule EIN2 and the nonsensemediated decay proteins UPFs play a central role in this ethylene-induced translational response. Furthermore, the 3'UTR of EBF2 is sufficient to confer translational regulation and required for the proper activation of ethylene responses. These findings represent a mechanistic paradigm of gene-specific regulation of translation in response to a key growth regulator.

North Carolina State University

Related Protein Synthesis Articles:

Facile synthesis of quinoline in water
This review summarizes an overview of the synthesis and functionalisation of quinoline scaffolds in aqueous medium.
A new synthesis method for three-dimensional nanocarbons
A Nagoya University team has developed a new method of synthesis for three-dimensional nanocarbons, utilizing a catalytic reaction to connect benzene rings and create an eight-membered ring structure.
COVID-19: Viral shutdown of protein synthesis
Researchers from Munich and Ulm have determined how the pandemic coronavirus SARS-CoV-2 inhibits the synthesis of proteins in infected cells and shown that it effectively disarms the body's innate immune system
Un-natural mRNAs modified with sulfur atoms boost efficient protein synthesis
A group of Japanese scientists has succeeded in the development of modified messenger RNAs (mRNAs) that contain sulfur atoms in the place of oxygen atoms of phosphate moieties of natural mRNAs.
Viruses beware: scientists show how bacterial 'attack dog' toxin disrupts protein synthesis
A team of Skoltech researchers from the Severinov laboratory and their colleagues have identified the way in which a component of a two-part bacterial self-defense system from the toxin-antitoxin family works, leading to cell dormancy that helps fight off bacterial viruses, antibiotics and other insults.
Ways to disrupt protein synthesis in Staphylococcus aureus found
It is well known that many strains of Staphylococcus are resistant to antibiotics, and research groups around the world seek new targets in the bacteria to decrease their infectious potential.
New technology enables fast protein synthesis
MIT chemists have developed a protocol to rapidly produce protein chains up to 164 amino acids long.
Well begun is half done? Skoltech researchers study the recipe for efficient protein synthesis
Skoltech scientists and their colleagues have studied more than 30 thousand variants of genetic sequences encoding two fluorescent proteins in order to determine which characteristics of mRNA and of the first dozen or so codons in it can increase the efficiency of translation.
Modern problems, primitive solutions: A glimpse into archaic protein synthesis systems
The interaction between 'transfer RNAs' and the enzymes that help them in protein synthesis has always been the key area of interest for understanding the evolution of the genetic code.
Green chemistry approaches to the synthesis of coumarin derivatives
Coumarin derivatives (coumarins) are a class of compounds with a wide range of biological activities, which have found their application in medicine, pharmacology, cosmetics and food industry.
More Protein Synthesis News and Protein Synthesis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.