Nav: Home

Avoiding neutrophil traps: How an invasive fungus defeats the mammalian immune response

October 22, 2015

Invasive aspergillosis (IA) is a serious disease of immune-compromised individuals and the most common invasive mold infection in humans. Although more than 250 different Aspergillus species are found in nature, and most contribute spores to the air we breathe, over 80% of human disease is caused by one particular culprit called Aspergillus fumigatus. A study published on October 22nd in PLOS Pathogens explores what distinguishes this fungus from its relatives and likely makes it so dangerous.

Donald Sheppard, from the Research Institute of the McGill University Health Centre in Montreal, Canada, and colleagues set out to explore features that could facilitate infection by A. fumigatus as compared with less pathogenic Aspergillus species. Because they and others had previously identified a particular sugar in the cell wall of A. fumigatus called GAG, short for "galactosaminogalactan", as critical to the fungus' ability to outwit the host immune system, the researchers started by testing whether differences in GAG production contribute to differences in the virulence (i.e. the ability to cause disease) observed among Aspergillus species.

Comparing A. fumigatus with the less pathogenic species A. nidulans, they found that the amount of cell wall-associated GAG correlated with the reported virulence of these species. Further experiments suggested that the production of high levels of cell wall-associated GAG makes A. fumigatus more resistant than A. nidulans to neutrophil killing by neutrophil extracellular traps, or NETs (NETs are are networks of extracellular fibers, composed of DNA and proteins secreted by immune cells called neutrophils, that bind and trap various pathogens).

Increasing cell wall-associated GAG in A. nidulans enhanced resistance to NETs and increased the virulence of this species to the same level as A. fumigatus in immune-compromised mice with intact NET formation. Collectively, these data suggest that A. nidulans is more sensitive than A. fumigatus to NETs due to lower overall levels of cell wall-associated GAG.

Their study, the researchers say "establishes a role for cell wall-associated GAG in mediating resistance to killing of Aspergillus by NETs and provides the first example of a virulence factor of A. fumigatus that is able to mediate enhanced virulence when expressed in a less pathogenic Aspergillus species". As their results highlight the importance of GAG as a key virulence factor of A. fumigatus, they suggest that targeting GAG may be an effective antifungal approach in some human patients.
Donald Sheppard
phone: +1.514.398.1759

Please use this URL to provide readers access to the paper (Link goes live upon article publication):

Authors and Affiliations: Mark J. Lee, McGill University, Canada
Hong Liu, University of California, Los Angeles, USA
Bridget M. Barker, Montana State University, USA
Brendan D. Snarr, McGill University, Canada
Fabrice N. Gravelat, McGill University, Canada
Qusai Al Abdallah, McGill University, Canada
Christina Gavino, McGill University Health Centre, Canada
Shane R. Baistrocchi, McGill University, Canada
Hanna Ostapska, McGill University, Canada
Tianli Xiao, McGill University, Canada
Benjamin Ralph, McGill University, Canada
Norma V. Solis, LA Biomedical Research Institute at Harbor--UCLA, USA
Mélanie Lehoux, McGill University, Canada
Stefanie D. Baptista, McGill University, Canada
Arsa Thammahong, Dartmouth College, USA
Robert P. Cerone, McGill University, Canada
Susan G. W. Kaminskyj, University of Saskatchewan, Canada
Marie-Christine Guiot, Montreal Neurological Hospital, Canada
Jean-Paul Latgé, Institut Pasteur Paris, France
Thierry Fontaine, Institut Pasteur Paris, France
Donald C. Vinh, McGill University Health Centre, Canada
Scott G. Filler, LA Biomedical Research Institute at Harbor--UCLA, USA; University of California, Los Angeles, USA
Donald C. Sheppard, McGill University, Canada

Please contact if you would like more information.

Funding: This work was supported in part by Operating funds from the Canadian Cystic Fibrosis Foundation, the Canadian Institutes of Health Research, and grant R01AI073829 from the National Institutes of Health, USA. DCS was supported by a Chercheur-Boursier award from the Fonds de recherche du Québec - Santé. MJL was supported by a studentship from the Research Institute of the McGill University Health Center. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Citation: Lee MJ, Liu H, Barker BM, Snarr BD, Gravelat FN, Al Abdallah Q, et al. (2015) The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps. PLoS Pathog 11(10): e1005187. doi:10.1371/journal.ppat.1005187


Related Fungus Articles:

International screening of the effects of a pathogenic fungus
The pathogenic fungus Candida auris, which first surfaced in 2009, is proving challenging to control.
Research breakthrough in fight against chytrid fungus
For frogs dying of the invasive chytridiomycosis disease, the leading cause of amphibian deaths worldwide, the genes responsible for protecting them may actually be leading to their demise, according to a new study published today in the journal Molecular Ecology by University of Central Florida and the Smithsonian Conservation Biology Institute (SCBI) researchers.
Researchers look to fungus to shed light on cancer
A team of Florida State University researchers from the Department of Chemistry and Biochemistry found that a natural product from the fungus Fusicoccum amygdali stabilizes a family of proteins in the cell that mediate important signaling pathways involved in the pathology of cancer and neurological diseases.
The invisibility cloak of a fungus
The human immune system can easily recognize fungi because their cells are surrounded by a solid cell wall of chitin and other complex sugars.
Taming the wild cheese fungus
The flavors of fermented foods are heavily shaped by the fungi that grow on them, but the evolutionary origins of those fungi aren't well understood.
Candida auris is a new drug-resistant fungus emerging globally and in the US early detection is key to controlling spread of deadly drug-resistant fungus
Early identification of Candida auris, a potentially deadly fungus that causes bloodstream and intra-abdominal infections, is the key to controlling its spread.
Genetic blueprint for extraordinary wood-munching fungus
The first time someone took note of Coniochaeta pulveracea was more than two hundred years ago, when the South African-born mycologist Dr Christiaan Hendrik Persoon mentioned it in his 1797 book on the classification of fungi.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
North American checklist identifies the fungus among us
Some fungi are smelly and coated in mucus. Others have gills that glow in the dark.
Tropical frogs found to coexist with deadly fungus
In 2004, the frogs of El Copé, Panama, began dying by the thousands.
More Fungus News and Fungus Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.