Nav: Home

Obstacle avoidance by echolocating bats: It might be simpler than it sounds

October 22, 2015

Echolocating bats can fly through complex environments in complete darkness. Swift and apparently effortless obstacle avoidance is the most fundamental function supported by biosonar. Despite the obvious importance of obstacle avoidance, it is unknown how bats perform this feat. New research published in PLOS Computational Biology suggests that bats compare the volume of an echo in both left and right ears, they then turn away from the side receiving the loudest echo, whereby avoiding the object.

Usually it is assumed that bats localize individual obstacles by interpreting the echoes. However, in complex environments, inferring the positions of obstacles from the multitude of echoes is very challenging and might be practically impossible.

In an effort to find an alternative explanation for the obstacle avoidance performance of echolocating bats, researchers from the University of Antwerp (Belgium) and the University of Bristol (UK) modelled bats flying through 2D and 3D environments. These included laser scanned models of real forests. The researchers proposed an algorithm for obstacle avoidance that relies on a very simple, yet robust, mechanism. They suggest the bat simply compares the loudness of the onset of the echoes at the left and the right ear and turns away from the side receiving the loudest echo.

When the echo delay is shorter, obstacles are nearer and the bat is assumed to turn more sharply. In a number of simulations, this simple algorithm was shown to steer the bat away from obstacles in both 2D and 3D environments. Importantly, this mechanism does not assume that bats infer the position of obstacles from the echoes. It simply relies on the relative loudness in both ears without the bat knowing where the obstacles are.

The paper presents the first computationally explicit explanation for obstacle avoidance in realistic and complex 3D environments. The finding that a really simple mechanism could underlie the obstacle avoidance of bats explains how they are able to respond both quickly and appropriately to looming obstacles. Indeed, such a strategy would allow them to respond more quickly than a mechanism that requires extensive analysis and processing of the echoes.
-end-
All works published in PLOS Computational Biology are Open Access, which means that all content is immediately and freely available. Use this URL in your coverage to provide readers access to the paper upon publication: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004484

Contact: Dieter Vanderelst
Address: Active Perception Lab
Koningstraat 8
Antwerp, 2000
BELGIUM
Email: dieter.vanderelst@ua.ac.be

Citation: Vanderelst D, Holderied MW, Peremans H (2015) Sensorimotor Model of Obstacle Avoidance in Echolocating Bats. PLoS Comput Biol 11(10):e1004484. doi:10.1371/journal.pcbi.1004484

Funding: DV was supported by a postdoctoral grant from the Flemish Fund For Scientific Research and a Marie Curie IEF fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

About PLOS Computational Biology

PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales through the application of computational methods. All works published in PLOS Computational Biology are Open Access. All content is immediately available and subject only to the condition that the original authorship and source are properly attributed. Copyright is retained. For more information follow @PLOSCompBiol on Twitter or contact ploscompbiol@plos.org.

About PLOS

PLOS is a nonprofit publisher and advocacy organization founded to accelerate progress in science and medicine by leading a transformation in research communication. For more information, visit http://www.plos.org.

PLOS

Related Bats Articles:

Why doesn't Ebola cause disease in bats, as it does in people?
A new study by researchers from The University of Texas Medical Branch at Galveston uncovered new information on why the Ebola virus can live within bats without causing them harm, while the same virus wreaks deadly havoc to people.
The genetic basis of bats' superpowers revealed
First six reference-quality bat genomes released and analysed
Bats offer clues to treating COVID-19
Bats carry many viruses, including COVID-19, without becoming ill. Biologists at the University of Rochester are studying the immune system of bats to find potential ways to ''mimic'' that system in humans.
A new social role for echolocation in bats that hunt together
To find prey in the dark, bats use echolocation. Some species, like Molossus molossus, may also search within hearing distance of their echolocating group members, sharing information about where food patches are located.
Coronaviruses and bats have been evolving together for millions of years
Scientists compared the different kinds of coronaviruses living in 36 bat species from the western Indian Ocean and nearby areas of Africa.
Bats depend on conspecifics when hunting above farmland
Common noctules -- one of the largest bat species native to Germany -- are searching for their fellows during their hunt for insects above farmland.
Tiny insects become 'visible' to bats when they swarm
Small insects that would normally be undetectable to bats using echolocation suddenly become detectable when they occur in large swarms.
Illumination drives bats out of caves
Researchers of the Leibniz Institute for Zoo and Wildlife Research and the Max Planck Institute for Ornithology have investigated how the illumination of bat caves affects the animals' behaviour and whether the colour of light makes a difference on their flight.
Bats may benefit from wildfire
Bats face many threats -- from habitat loss and climate change to emerging diseases, such as white-nose syndrome.
Ecology: Wildfire may benefit forest bats
Bats respond to wildfires in the Sierra Nevada Mountains in varied but often positive ways, a study in Scientific Reports suggests.
More Bats News and Bats Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.