Nav: Home

Magnetic hide and seek

October 22, 2015

For the first time, astrophysicists are able to determine the presence of strong magnetic fields deep inside pulsating giant stars. Magnetic fields have important consequences in all stages of stellar evolution, from a star's formation to its demise.

A consortium of international researchers, including several from UC Santa Barbara's Kavli Institute for Theoretical Physics (KITP), used asteroseismology -- a discipline similar to seismology -- to track waves traveling through stars in order to determine their inner properties. Their findings appear in the journal Science.

"We can now probe regions of the star that were previously hidden," said co-lead author Matteo Cantiello, a specialist in stellar astrophysics at KITP. "The technique is analogous to a medical ultrasound, which uses sound waves to image otherwise invisible parts of the human body."

Cantiello's curiosity and that of his co-authors was sparked when astrophysicist Dennis Stello of the University of Sydney presented puzzling data from the Kepler satellite, a space telescope that measures stellar brightness variations with very high precision. Cantiello, KITP director Lars Bildsten and Jim Fuller, a postdoctoral fellow at the California Institute of Technology, agreed that this was a mystery worth solving. After much debate, many calculations and the additional involvement of Rafael García, a staff scientist at France's Commissariat à l'Énergie Atomique, a solution emerged. The data were explained by the presence of strong magnetic fields in the inner regions of these stars.

The puzzling phenomenon was observed in a group of red giants imaged by Kepler. Red giants are stars much older and larger than the sun. Their outer regions are characterized by turbulent motion that excites sound waves, which interact with gravity waves that travel deep into the stellar core. Magnetic fields in the core can hinder the motions produced by the gravity waves.

"Imagine the magnetic field as stiff rubber bands embedded in the stellar gas, which affect the propagation of gravity waves," Fuller explained. "If the magnetic field is strong enough, the gravity waves become trapped in the star's core. We call this the magnetic greenhouse effect."

The trapping occurs because the incoming wave is reflected by the magnetic field into waves with a lower degree of symmetry, which are prevented from escaping the core. As a result, stellar surface oscillations have smaller amplitude compared to a similar star without a strong magnetic field.

"We used these observations to put a limit on -- or even measure -- the internal magnetic fields for these stars," Cantiello said. "We found that red giants can possess internal magnetic fields nearly a million times stronger than a typical refrigerator magnet.

"This is exciting as internal magnetic fields play an important role both for the evolution of stars and for the properties of their remnants," Cantiello added. "For example, some of the most powerful explosions in the universe -- long gamma-ray bursts -- are associated with the death of some huge stars. These behemoths -- 10 or more times more massive than our sun -- most likely ended their lives with strong magnetic fields in their cores."

This work was written collaboratively on the web. A public, open Science version of the published paper can be found on Authorea, including a layman's summary.
-end-


University of California - Santa Barbara

Related Magnetic Field Articles:

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.
Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.
Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.
How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.
Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.