Nav: Home

Collaborative research reveals a new view of cell division

October 22, 2015

EUGENE, Ore. -- Oct. 23, 2015 -- Basic research into the mechanisms of cell division, using eggs and embryos from frogs and starfish, has led researchers to an unexpected discovery about how animal cells control the forces that shape themselves.

During a key point in cytokinesis -- the process in which a cell divides its cytoplasm to create two daughter cells -- a cell's cortex becomes an excitable medium, the researchers report in a paper placed online ahead of print by the journal Nature Cell Biology.

It has long been clear that cytokinesis is highly dynamic, but before it happens an animal cell has no idea where this crucial event will occur, said co-author George von Dassow, a University of Oregon biologist at the Oregon Institute of Marine Biology in Charleston. "After it happens, the cell has literally ripped itself in two," he said. "The contractile machinery that makes this happen is quintessentially ephemeral."

What hasn't been obvious, he said, is how the cell manages to ensure that the entire surface can participate, but, once specified, only one narrow equatorial band does the crucial act. The cell surface enters an excitable state just after chromosomes separate deep in the cell cytoplasm.

At that point, von Dassow said, waves of signaling molecules form. They appear to function like an amplifier, tuning in faint signals from deep in the cell to accurately and precisely delineate the working conditions for contractile proteins and other enzymes to assemble at the right place, in the right amount and at the right time during cell division, or, as the research team theorized, during other important cell-shape changes.

This "cell-cycle-entrained behavior" in the cortex -- a thin layer of organized cytoplasm associated with the cell membrane -- is present in vertebrates and invertebrates, the researchers show in their paper.

"Systems as diverse as microbial populations, cardiac muscle cells, the inflammatory response, and even defined chemical mixtures, may exhibit excitability, which has long been an interest to mathematicians," von Dassow said. "High-resolution live-cell imaging combined with mathematical modeling suggests how this dynamic behavior might be used by cells to accurately and adaptively manage their contractile machinery."

The discovery emerged from work being done under two National Science Foundation grants (MCB-0917887 and MCB-1041200) to the UO's von Dassow and a National Institutes of Health grant (GM52932) to co-author William M. Bement of the University of Wisconsin-Madison.

"We are longtime collaborators, and it just happened that two threads of research accidentally converged on what turned out to be a similar phenomenon in both frog eggs and embryos, and starfish eggs and embryos," von Dassow said.
Contributing equally to the research was Andrew B. Goryachev of the University of Edinburg in the United Kingdom, a mathematician and specialist on excitable dynamics.

Other co-authors were: Marcin Leda of the University of Edinburg; Alison M. Moe, Angela M. Kita, Matthew E. Larson, Adriana E. Golding and Courtney Pfeuti, all of Bement's Wisconsin lab; Kuan-Chung Su of the Whitehead Institute for Biomedical Research at the Massachusetts Institute of Technology; and Ann M. Miller of the University of Michigan.

Source: George von Dassow, assistant professor of biology and senior research associate of the Oregon Institute of Marine Biology, 541-888-2581,

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.


Von Dassow faculty page:
Department of Biology:
Oregon Institute of Marine Biology:
Bement faculty page:
Paper abstract:

University of Oregon

Related Cell Division Articles:

Cell division: Cleaning the nucleus without detergents
A team of researchers, spearheaded by the Gerlich lab at IMBA, has uncovered how cells remove unwanted components from the nucleus following mitosis.
Genetic signature boosts protein production during cell division
A research team has uncovered a genetic signature that enables cells to adapt their protein production according to their state.
Inner 'clockwork' sets the time for cell division in bacteria
Researchers at the Biozentrum of the University of Basel have discovered a 'clockwork' mechanism that controls cell division in bacteria.
Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.
Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.
Scientists gain new insights into the mechanisms of cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth.
Cell division at high speed
When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.
Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.
Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.
Seeing is believing: Monitoring real time changes during cell division
Scientist have cast new light on the behaviour of tiny hair-like structures called cilia found on almost every cell in the body.
More Cell Division News and Cell Division Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.