Nav: Home

Scientists discover ancient safety valve linking pollen to bacteria

October 22, 2015

Like seeds, pollen loses most of its water during maturation, entering a state of suspended animation. This allows it to survive its journey from male to female organs of a flower, where it is rehydrated by sugary fluids secreted by the female organ, and springs into life again.

But rehydrating is a dangerous process, one that can kill the pollen grain before it can fertilize the egg if not properly controlled.

New research from the lab of Elizabeth Haswell, PhD, associate professor of biology in Arts & Sciences at Washington University in St. Louis, published Oct. 23, 2015 in the journal Science shows how pollen survives the reanimation process. A specialized protein with ancient origins helps the hydrating pollen grain relieve excessive pressure and survive the stressful transition.

Too little -- or too much -- of this protein impairs pollen's ability to fertilize the female egg, showing that the protein is a crucial part of reproductive success.

Sensing pressure

Like all living things, plants must respond to forces in their environment in order to adapt and thrive. Sensing gravity, their roots grow down instead of up. Feeling strong winds, plants grow shorter and stockier. And sensing that the membranes that enclose their cells are stretched, they open pores to reduce potentially damaging pressure.

The pressure sensor and safety valve are combined in a single protein, named MSL8, which is a mechanosensitive ion channel. An ion channel is a small pore in the cell membrane that allows specific ions (charged atoms) to enter or leave the cell. It is not continuously open, however, but instead is gated, opening and closing in response to membrane stretch.

For years, scientists have known that bacteria use stretch-activated channels to relieve excessive internal pressure. When too much water rushes into the cell and stretches the membrane, like an inflating balloon, these channels open to keep the cell from bursting, acting as a kind of safety valve.

Researchers found evolutionary cousins of these proteins in plants more than ten years ago, but it wasn't clear just what they were doing. Plants and bacteria diverged billions of years ago -- so what links the two still?

In many ways, a mature pollen grain resembles a bacterium: a single cell, all on its own, without support from its mother plant. So when an undergraduate in Haswell's lab discovered that dry pollen missing MSL8 died when it took up water too quickly, Haswell realized that despite the evolutionary distance between them, pollen and bacteria both used stretch-activated channels as safety valves.

"The bacterial channel protects the bacteria from random environmental stress," Haswell said. "In the pollen a related channel is also protecting the cell, but from stresses it must withstand in order to reproduce."

After rehydrating, reanimated pollen grows a long tube to carry sperm cells to the waiting egg cell, something with no parallel in bacteria. Pollen missing MSL8 readily germinated this pollen tube -- even better than pollen with the channel -- but the tubes went on to burst, unable to control the pressure that powered their growth. The upshot was that pollen without MSL8 didn't fertilize eggs as well.

Eric Hamilton, a fourth-year PhD candidate in the Plant and Microbial Biosciences program and the lead author of the paper, was surprised to find it was also difficult to propagate plants that produced high levels of MSL8. Investigating, he discovered that their pollen had a hard time germinating its pollen tube. Pollen with excess MSL8 couldn't build up the pressure required to bust through the tough pollen cell wall. Unable to drive a pollen tube to an egg, it was infertile.

So it's a Goldilocks situation: too little MSL8 and pollen bursts; too much, and it can't power the growth required to reach the egg. Although pollen protects itself during hydration much as bacteria do, MSL8's role in the pollen tube growth shows that plants have adapted this ancient channel to their unique needs.

"This study illustrates how important mechanical signals are in biology," Haswell said. "They are not just stress signals from the environment, but also signals that are part of normal developmental processes. Mechanotransduction is important to every aspect of an organism's life."

Washington University in St. Louis

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.