Scientists discover ancient safety valve linking pollen to bacteria

October 22, 2015

Like seeds, pollen loses most of its water during maturation, entering a state of suspended animation. This allows it to survive its journey from male to female organs of a flower, where it is rehydrated by sugary fluids secreted by the female organ, and springs into life again.

But rehydrating is a dangerous process, one that can kill the pollen grain before it can fertilize the egg if not properly controlled.

New research from the lab of Elizabeth Haswell, PhD, associate professor of biology in Arts & Sciences at Washington University in St. Louis, published Oct. 23, 2015 in the journal Science shows how pollen survives the reanimation process. A specialized protein with ancient origins helps the hydrating pollen grain relieve excessive pressure and survive the stressful transition.

Too little -- or too much -- of this protein impairs pollen's ability to fertilize the female egg, showing that the protein is a crucial part of reproductive success.

Sensing pressure

Like all living things, plants must respond to forces in their environment in order to adapt and thrive. Sensing gravity, their roots grow down instead of up. Feeling strong winds, plants grow shorter and stockier. And sensing that the membranes that enclose their cells are stretched, they open pores to reduce potentially damaging pressure.

The pressure sensor and safety valve are combined in a single protein, named MSL8, which is a mechanosensitive ion channel. An ion channel is a small pore in the cell membrane that allows specific ions (charged atoms) to enter or leave the cell. It is not continuously open, however, but instead is gated, opening and closing in response to membrane stretch.

For years, scientists have known that bacteria use stretch-activated channels to relieve excessive internal pressure. When too much water rushes into the cell and stretches the membrane, like an inflating balloon, these channels open to keep the cell from bursting, acting as a kind of safety valve.

Researchers found evolutionary cousins of these proteins in plants more than ten years ago, but it wasn't clear just what they were doing. Plants and bacteria diverged billions of years ago -- so what links the two still?

In many ways, a mature pollen grain resembles a bacterium: a single cell, all on its own, without support from its mother plant. So when an undergraduate in Haswell's lab discovered that dry pollen missing MSL8 died when it took up water too quickly, Haswell realized that despite the evolutionary distance between them, pollen and bacteria both used stretch-activated channels as safety valves.

"The bacterial channel protects the bacteria from random environmental stress," Haswell said. "In the pollen a related channel is also protecting the cell, but from stresses it must withstand in order to reproduce."

After rehydrating, reanimated pollen grows a long tube to carry sperm cells to the waiting egg cell, something with no parallel in bacteria. Pollen missing MSL8 readily germinated this pollen tube -- even better than pollen with the channel -- but the tubes went on to burst, unable to control the pressure that powered their growth. The upshot was that pollen without MSL8 didn't fertilize eggs as well.

Eric Hamilton, a fourth-year PhD candidate in the Plant and Microbial Biosciences program and the lead author of the paper, was surprised to find it was also difficult to propagate plants that produced high levels of MSL8. Investigating, he discovered that their pollen had a hard time germinating its pollen tube. Pollen with excess MSL8 couldn't build up the pressure required to bust through the tough pollen cell wall. Unable to drive a pollen tube to an egg, it was infertile.

So it's a Goldilocks situation: too little MSL8 and pollen bursts; too much, and it can't power the growth required to reach the egg. Although pollen protects itself during hydration much as bacteria do, MSL8's role in the pollen tube growth shows that plants have adapted this ancient channel to their unique needs.

"This study illustrates how important mechanical signals are in biology," Haswell said. "They are not just stress signals from the environment, but also signals that are part of normal developmental processes. Mechanotransduction is important to every aspect of an organism's life."
-end-


Washington University in St. Louis

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.