New tool gives deeper understanding of glioblastoma

October 22, 2018

ITHACA, N.Y. - Researchers in the lab of Charles Danko at the Baker Institute for Animal Health have developed a new tool to study genetic "switches" active in glioblastoma tumors that drive growth of the cancer. In a new paper in Nature Genetics, they identified key switches in different types of tumors, including switches linked to how long a patient survives.

Glioblastoma is an aggressive cancer that forms in the brain or spinal cord. "It's a devastating disease, and there are no good treatment options," said lead author Tinyi Chu, a graduate fellow in Danko's lab. Even when patients undergo treatment, most survive just 15 months post-diagnosis.

In the new study, Danko's group partnered with colleagues at the State University of New York Upstate Medical University to analyze 20 glioblastoma samples from its tissue bank.

"A lot of diseases, including cancer, fundamentally are defects in how our genes are used, not necessarily in the genes themselves," said Danko, assistant professor of biomedical sciences. Genes make up only two percent of our genome. Switches called transcription factors bind to the genome to turn those genes on and off, which trigger the cellular changes that cause disease.

To analyze the tumors, the researchers used a technique called ChRO-seq that creates a map of which switches are active and which genes they turn on. Co-author Hojoong Kwak, Cornell assistant professor of molecular biology and genetics, initially invented ChRO-Seq as a graduate student at Cornell University, and collaborated with Danko's group to develop the new application.

Using ChRO-seq data, the team was able to classify the glioblastomas into subtypes, based on which particular switches were active in the different tumors compared to healthy brain tissues. They also identified three switches that will be tested in larger studies to determine their ability to predict which patients will survive longer with the disease, including two switches whose connections were previously unknown.

Chu is now analyzing an even larger group of glioblastomas to link patient survival and treatment outcomes with the active switches in each tumor. He hopes the results could inform personalized treatment plans for patients or help to develop new therapies in the future.

The new technique studies not only cancer, but many other diseases caused by malfunctions in gene regulation, such as certain types of heart or autoimmune diseases. "ChRO-seq gives you a lot of information about what switch is turning on a tumor or a diseased cell," said Danko. "It gives you a starting point to think about how you can shut that switch off."
Cornell University has dedicated television and audio studios available for media interviews supporting full HD, ISDN and web-based platforms.

Cornell University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to