Overspending on defense arsenal bankrupts a plant's economy

October 22, 2018

Defend or grow? Can plants do both at the same time? Michigan State University scientists might be inching closer to answering these questions. The answers matter. They could someday help us understand natural ecosystems or help farmers increase yields, without increasing dependence on chemicals to resist pests.

The lab of Gregg Howe at the MSU-DOE Plant Research Laboratory has genetically tuned a plant to become highly resistant to insect attacks. But becoming such a fortress compromises its growth and procreative capabilities. The research is published in Proceedings of the National Academy of Sciences.

The findings seem to support a long-held paradigm called the growth-defense trade-off. It goes something like this: plants work with a fixed energy budget. So, they prioritize resource usage depending on need. If they spend more energy on growth, their defenses are compromised. On the other hand, having more defense capabilities penalizes growth.

Plants, in nature, seem to follow this general rule. When stressed by drought, disease, or insect pests, plants will mount defensive responses, which typically slows growth to a crawl. But if plants have to grow fast, for example to compete with neighbors for light, their defenses are weakened.

"Our study provides evidence that large investments in defense necessarily reduce the amount of resources that otherwise would be available for growth and reproductive fitness," says Qiang Guo, a graduate student in the Howe lab.

The study focuses on the defense system against herbivores, which depend on plants for shelter and food. If a caterpillar starts munching on a leaf, the system produces toxins that ward it off. But in the absence of danger, the plant shuts down its defense system with a battery of 13 repressor proteins, called JAZ, that put the brakes on defense in order to save energy.

A former post-doc in the Howe lab, Yuki Yoshida, genetically bred a plant missing 10 of these 13 repressor proteins. The result was a plant in continuous, overdrive defense mode.

"It kept producing defense compounds, even in the absence of threats. As expected, it showed high resistance to insects," says Guo. "Unleashing this defense arsenal also provided protection against fungi that target plant tissues."

Plants must balance their budgets too


Alas, there are dire consequences to a strong plant without.... "All that JAZ."

"They have a much slower growth rate compared to their wild type counterparts. We can literally see and measure the deficit in growth rate per day."

The plants also have strongly compromised reproductive success. They produce 1/3rd fewer seeds, and those seeds germinate later than usual. The seeds tend to be smaller and of lower quality, packed with less nutritional fats and with a different lipid make-up.

The team ruled out that photosynthesis - which is how plants obtain energy resources - was compromised. Enter Ian Major, a post-doc in the Howe lab.

"The mutated plant gets the same amount of energy compounds from photosynthesis as its wild, natural counterpart," Major says. "However, it consumes more energy than usual. We think the plant is fueling the massive and constant production of defense compounds, which draws resources away from growth.

Guo adds that the high-energy usage starves the plants of nutrients. "It doesn't have enough energy to perform other functions optimally, like growth" he adds. "To illustrate that point, we fed the plant with sugar, a fuel source, and it partially recovered its growth."

"Our conclusion is that JAZ proteins help plants grow and reproduce by taming their defenses when the threat of attack is low, which conserves energy. Depending on the severity of the threat, the JAZ proteins will dial up the defenses as needed, perhaps like a dimmable light switch, ," Major says.

The research team highlights the importance of Dr. Yoshida's ten-year effort to knock out the JAZ proteins, one by one. "He ignored a lot of us when we told him it was a high-risk, difficult project. But now, we have new ways of thinking about plants and how we can combine plant traits in new and useful ways," Major says.
-end-
This work was funded by the Department of Energy's Office of Basic Energy Sciences - Physical Biosciences program.

DOE/US Department of Energy

Related Plants Articles from Brightsurf:

When plants attack: parasitic plants use ethylene as a host invasion signal
Researchers from Nara Institute of Science and Technology have found that parasitic plants use the plant hormone ethylene as a signal to invade host plants.

210 scientists highlight state of plants and fungi in Plants, People, Planet special issue
The Special Issue, 'Protecting and sustainably using the world's plants and fungi', brings together the research - from 210 scientists across 42 countries - behind the 2020 State of the World's Plants and Fungi report, also released today by the Royal Botanic Gardens, Kew.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

How do plants forget?
The study now published in Nature Cell Biology reveals more information on the capacity of plants, identified as 'epigenetic memory,' which allows recording important information to, for example, remember prolonged cold in the winter to ensure they flower at the right time during the spring.

The revolt of the plants: The arctic melts when plants stop breathing
A joint research team from POSTECH and the University of Zurich identifies a physiologic mechanism in vegetation as cause for Artic warming.

How plants forget
New work published in Nature Cell Biology from an international team led by Dr.

Ordering in? Plants are way ahead of you
Dissolved carbon in soil can quench plants' ability to communicate with soil microbes, allowing plants to fine-tune their relationships with symbionts.

When good plants go bad
Conventional wisdom suggests that only introduced species can be considered invasive and that indigenous plant life cannot be classified as such because they belong within their native range.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Can plants tell us something about longevity?
The oldest living organism on Earth is a plant, Methuselah a bristlecone pine (Pinus longaeva) (pictured below) that is over 5,000 years old.

Read More: Plants News and Plants Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.