Nav: Home

Deuteron-like heavy dibaryons -- a step towards finding exotic nuclei

October 22, 2019

Have you ever wondered how the Sun creates the energy that we get from it every day and how the other elements beside hydrogen have formed in our universe? Perhaps you know that this is due to fusion reactions where four nuclei of hydrogen join together to produce a helium nucleus. Such nucleosynthesis processes are possible solely due to the existence, in the first place, of stable deuterons, which are made up of a proton and a neutron. Probing deeper, one finds that a deuteron consists of six light quarks. Interestingly, the strong interaction between quarks, which brings stability to deuterons, also allows for various other six-quark combinations, leading to the possible formation of many other deuteron-like nuclei. However, no such nuclei, though theoretically speculated about and searched for experimentally many times, have yet been observed. All this may get changed with an exciting new finding, where, using a state-of-the-art first-principles calculation of lattice quantum chromodynamics (QCD), the basic theory of strong interactions, a definite prediction of the existence of other deuteron-like nuclei has been made by TIFR's physicists. Using the computational facility of the Indian Lattice Gauge Theory Initiative (ILGTI), Prof. Nilmani Mathur and postdoctoral fellow Parikshit Junnarkar in the Department of Theoretical Physics have predicted a set of exotic nuclei, which are not to be found in the Periodic Table. The masses of these new exotic nuclei have also been calculated precisely.

These new subatomic particles could either be made of six heavy quarks (charm and bottom) or heavy and strange quarks. They are stable against strong and electromagnetic decays, but ? unlike the deuteron ? they can decay through weak interactions. Surprisingly, it is found that the stability of such nuclei increases as they become heavier. These predictions may aid in discovering these new subatomic particles at experimental facilities. This also opens up the possibility of the existence of many other exotic nuclei, which can be formed through the fusion of heavy baryons, similar to the formation of nuclei of elements in the Periodic Table. In such reactions, these deuteron-like nuclei could well play the same role as the deuteron in nucleosynthesis. Formation of these new subatomic particles also enhances the possibility of a quark-level analogue of nuclear fusion as discussed recently [Nature 551, 89 (2017)]. Formation of some of these states through fusion is highly exothermic, releasing energy as large as 300 MeV/reaction -- an exciting possibility for energy creation some day in the future!

Predicting new subatomic particles, particularly with more than three quarks, through first-principles calculations demands an intricate amalgamation between theory and high-performance computing. Not only does it require a sophisticated understanding of the quantum field-theoretic issues, but the availability of large-scale computational resources is also crucial. In fact some of the largest scientific computational resources of the world are being utilized by lattice gauge theorists, like those at TIFR, who are trying to solve the mystery of strong interactions of our Universe through their investigations inside the femtoworld (within a scale of about one million-billionth of a meter). Lattice QCD methods can also play a crucial role in understanding matter under conditions of high temperature and density similar to those in the early stages of the Universe after the Big Bang.
-end-


Tata Institute of Fundamental Research

Related Quarks Articles:

Scientists shed light on mystery of dark matter
Nuclear physicists at the University of York are putting forward a new candidate for dark matter -- a particle they recently discovered called the d-star hexaquark.
Exploring strangeness and the primordial Universe
Within quark-gluon plasma, strange quarks are readily produced through collisions between gluons.
Deuteron-like heavy dibaryons -- a step towards finding exotic nuclei
Using supercomputer, TIFR's physicists have predicted the existence of deuteron-like exotic nuclei for the first time as well as provided their masses precisely.
FSU physics researchers break new ground, explore unknown energy regions
Florida State University physicists are using photon-proton collisions to capture particles in an unexplored energy region, yielding new insights into the matter that binds parts of the nucleus together.
A novel tool to probe fundamental matter
The origin of matter remains a complex and open question.
CEBAF turns on the charm
The world's most advanced particle accelerator for investigating the quark structure of the atom's nucleus has just charmed physicists with a new capability.
Physicists reveal why matter dominates universe
Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.
Physicists solve 35-year-old mystery about quarks
Physicists from Tel Aviv University, the Massachusetts Institute of Technology and the Thomas Jefferson National Accelerator Facility now know why quarks, the building blocks of the universe, move more slowly inside atomic nuclei, solving a 35-year-old-mystery.
Study of quark speeds finds a solution for a 35-year physics mystery
MIT physicists now have an answer to a question in nuclear physics that has puzzled scientists for three decades: Why do quarks move more slowly inside larger atoms?
Merging neutron stars
The option to measure the gravitational waves of two merging neutron stars has offered the chance to answer some of the fundamental questions about the structure of matter.
More Quarks News and Quarks Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

TED Radio Wow-er
School's out, but many kids–and their parents–are still stuck at home. Let's keep learning together. Special guest Guy Raz joins Manoush for an hour packed with TED science lessons for everyone.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.