Study shows how circulating tumor cells target distant organs

October 22, 2019

Most cancers kill because tumor cells spread beyond the primary site to invade other organs. Now, a USC study of brain-invading breast cancer cells circulating in the blood reveals they have a molecular signature indicating specific organ preferences.

The findings, which appear in Cancer Discovery, help explain how tumor cells in the blood target a particular organ and may enable the development of treatments to prevent the spread of cancers, known as metastasis.

In this study, Min Yu, assistant professor of stem cell and regenerative medicine at the Keck School of Medicine of USC, isolated breast cancer cells from the blood of breast cancer patients with metastatic tumors. Using a technique she developed previously, she expanded or grew the cells in the lab, creating a supply of material to work with.

Surface proteins predict cancer cell's destination

Analyzing the tumor cells in animal models, Yu's lab identified regulator genes and proteins within the cells that apparently directed the cancer's spread to the brain. To test this concept, human tumor cells were injected into the bloodstream of animal models. As predicted, the cells migrated to the brain. Additional analysis of cells from one patient's tumor predicted that the cells would later spread to the patient's brain -- and they did.

Yu also discovered that a protein on the surface of brain-targeting tumor cells helps them to breech the blood brain barrier and lodge in brain tissue, while another protein inside the cells shield them from the brain's immune response, enabling them to grow there.

Future drugs could kill circulating tumor cells

"We can imagine someday using the information carried by circulating tumor cells to improve the detection, monitoring and treatment of the spreading cancers," Yu said. "A future therapeutic goal is to develop drugs that get rid of circulating tumor cells or target those molecular signatures to prevent the spread of cancer."
Yu is a member of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, and her laboratory is located in the USC Norris Comprehensive Cancer Center.

About this study

In addition to Yu, other authors of the study are Remi Klotz, Amal Thomas, Teng Teng, Sung Min Han, Oihana Iriondo, Lin Li, Alan Wang, Negeen Izadian, Matthew MacKay, Byoung-San Moon, Kevin J. Liu, Sathish Kumar Ganesan, Grace Lee, Diane S. Kang, Michael F. Press, Wange Lu, Janice Lu, Bodour Salhia and Frank Attenello, all of the Keck School of Medicine; Sara Restrepo-Vassalli, James Hicks and Andrew D. Smith of USC Dornsife; Charlotte S. Walmsley, Christopher Pinto, Dejan Juric and Aditya Bardia of Massachusetts General Hospital.

The study was supported by grants from the National Institutes of Health (DP2 CA206653) the Donald E. and Delia B. Baxter Foundation, the Stop Cancer Foundation, the PEW Charitable Trusts and the Alexander & Margaret Stewart Trust, the SC CTSI pilot grant (UL1TR001855 and UL1TR000130), a California Institute for Regenerative Medicine (CIRM) postdoctoral fellowship and a CIRM Bridges award (EDUC2-08381), and the National Cancer Institute (P30CA014089).

Disclosures: Yu is the founder and director of CanTraCer Biosciences Inc. Bardia is a consultant or advisory board member for Novartis, Pfizer, Genentech, Merck, Immunomedics, Sanofi, Diiachi and Biothernostics. Lu is on the advisory board for Pfizer, Novartis, Radius and Daiichi. Press is a consultant or advisory board member for Biocartis SA, Cepheid, Puma Biotechnology, Science Branding Communications and Zymeworks Inc.

Photo caption: Development of brain metastasis is a complex process in which metastatic cells (green) overcome the protective effect of immune cells (red).

Photo credit: Remi Klotz in Yu lab/USC

University of Southern California

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to