KU Leuven researchers use satellite data to calculate snow depth in mountain ranges

October 22, 2019

Bioscience engineers at KU Leuven (Belgium) have developed a method to measure the snow depth in all mountain ranges in the Northern Hemisphere using satellites. This technique makes it possible to study areas that cannot be accessed for local measurements, such as the Himalayas. The findings were published in Nature Communications.

"In Western Europe, we tend to associate snow with ski trips, outdoor fun, or traffic jams, which goes to show that the importance of snow is often underestimated," says postdoctoral researcher Hans Lievens from the Department of Earth and Environmental Sciences at KU Leuven, who is the lead author of this study.

"Each year, a fifth of the Northern Hemisphere gets covered in snow. More than one billion people rely on this snow for drinking water. Melting water is also very important for agriculture and the production of electricity. "Furthermore, snow has a cooling effect on our climate by reflecting sunlight."

As part of an international team, Lievens studied the snow depth in more than 700 mountain ranges in the Northern Hemisphere. The team used radar measurements provided by Sentinel-1, a satellite mission of the European Space Agency (ESA). The researchers analysed the data for the period between the Winter of 2016 up to and including the Summer of 2018.

"The Sentinel-1 mission specifically aims to observe the surface of the Earth," says Lievens. "The satellite emits radar waves and, based on the reflection of these waves, we can calculate the snow depth. The ice crystals rotate the signal: the more rotated the waves, the more snow there is."

Weather and climate models

Existing calculations of snow depth are often based on local measurements, but in many cases, these offer an inaccurate or incomplete picture. In the Himalayas, for instance, in-situ measurements are almost impossible due to the extreme circumstances. Thanks to the satellite data, it is now possible to observe mountain areas that are difficult or impossible to access.

The absolute peak in the measurements pertains to the west of Canada: the Coast Mountains have a snow volume of 380 cubic kilometres. That is over 100 cubic kilometres more than local measurements indicate. Also standing out are the snowy areas in eastern Russia, especially in Siberia and the Kamchatka Peninsula. In Europe, the Scandinavian mountains and the Alps are the areas with the largest volumes of snow.

"Based on these first measurements, we cannot estimate the impact of climate change yet, but this should become possible in the long run," says Lievens. "We will be able to monitor more accurately how the volume of snow evolves and when the melting season takes place. Our method may also help to improve water distribution management and to assess the flood risk in certain areas."

Winter expedition

This winter, Hans Lievens and doctoral student Isis Brangers are travelling to the Rocky Mountains in Idaho to further study the technique. "We don't fully understand yet what physically happens when the radar waves reflect in the snowpack. Various elements may influence the signal: the shape and size of the ice crystals, humidity, the different layers of snow, and so on. By continuing to measure and study snow locally, we should be able to refine the method."

"In January and February, we'll also take part in the NASA SnowEx campaign. An international team of scientists is examining the snow conditions at Grand Mesa, a large plateau in Colorado with a 3500-metre altitude. We'll be testing various new techniques and sensors there to calculate the snow mass. It's promising to be a very intensive but especially informative time."
-end-
About KU Leuven

KU Leuven is Europe's most innovative university (Reuters) and ranks 48th in the world (Times Higher Education). Located in Belgium, it is dedicated to research, education, and service to society. KU Leuven is a founding member of the League of European Research Universities (LERU) and has a strong European and international orientation. Our scientists conduct basic and applied research in a comprehensive range of disciplines. University Hospitals Leuven, our network of research hospitals, provides high-quality healthcare and develops new therapeutic and diagnostic insights with an emphasis on translational research. The university welcomes more than 50,000 students from over 140 countries. The KU Leuven Doctoral Schools train approximately 4,500 PhD students. http://www.kuleuven.be/mediaresources

KU Leuven

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.