Nav: Home

Scientists identify what may be a key mechanism of opioid addiction

October 22, 2019

JUPITER, FL - Scientists at Scripps Research have discovered a molecular process in brain cells that may be a major driver of drug addiction, and thus may become a target for future addiction treatments.

The scientists, who published their discovery on Oct. 22 in Cell Reports, used an advanced imaging technique to visualize brain cell activity during exposure to an opioid, in a part of the brain known to be centrally important for addiction. They found that key brain-cell changes that occur with addiction and help sustain addiction behavior are accompanied by--and plausibly driven by--particular changes in a signaling system involving a messenger molecule called cyclic AMP (cAMP).

"Our findings suggest the possibility, which we now want to test, that an intervention to reverse these cAMP changes could reduce symptoms of addiction, such as drug cravings and withdrawal dysphoria," says the study's senior author Kirill Martemyanov, PhD, professor and co-chair of the Department of Neuroscience at Scripps Research.

Drug overdoses--most of which involve opioids--kill about 70,000 people in the United States every year, and on the whole, drug addiction or dependency is estimated to affect tens of millions of Americans. Yet, researchers have never found a cure or even a very good treatment for addiction. That is mainly because they have lacked techniques for studying the deep molecular mechanisms in the brain that underlie the addiction process.

Last year, Martemyanov's team--in collaboration with Dr. Ronald Davis' laboratory, also at Scripps Research--developed a tool that could help with such investigations: a sensor system genetically engineered into mice to enable real-time recordings of cAMP levels in any type of neuron. The cAMP molecule functions as an internal messenger in neurons, carrying signals from receptors embedded in the cell's outer membrane into the inner workings of the cell. Until now, this realm of neurobiology has been relatively obscure for scientists.

In the new study, the scientists used their sensor system to track cAMP levels in neurons that make up a brain structure called the nucleus accumbens--a central component of the brain's reward and motivation system, which is essentially subverted by addiction. Opioids, like other drugs of abuse, cause an unnaturally large surge of dopamine into the nucleus accumbens. When this happens repeatedly, reward and motivation processing is altered, and this alteration largely accounts for the behavioral features of addiction--including the buildup of tolerance to the drug so that ever-higher doses are needed, and the drug cravings and dysphoria that occur with drug withdrawal. The researchers wanted to see how cAMP signaling from dopamine receptors on nucleus accumbens neurons change with repeated opioid exposure, and if that could explain the changes to accumbens function.

The scientists found that injections of morphine, and the resulting flood of dopamine into the nucleus accumbens, led to distinct changes in cAMP signaling in the two types of dopamine-sensitive neurons known as D1 and D2 medium spiny neurons that comprise this brain structure. An initial morphine dose made the D1 neurons--whose activity is associated with positive, rewarding experiences--much more responsive to dopamine based on their cAMP signaling, compared to the D2 neurons, which are thought to inhibit the reward signal.

By contrast, the team found that with repeated daily morphine exposures, simulating chronic drug use that would cause addiction, the balance in the activity of the two types of neurons--reflected in their cAMP responses to dopamine--shifted strongly in favor of the inhibitory D2 neurons. They think that these neuronal adaptations may be responsible for the downward spiral of tolerance and withdrawal dysphoria that develops as addiction progresses.

"Seeing these changes in cAMP responses really helped us understand how these two different neuron populations in the accumbens can be stimulated at the same time, while also producing different outcomes," says Brian Muntean, PhD, a postdoctoral research associate in the Martemyanov lab who was first author of the study and did most of the work to develop the cAMP reporter tool.

Martemyanov and his team now plan to see if reversing these cAMP changes can remove or reduce behavioral signs of addiction in animal models.

They also intend to use their cAMP reporter tool to investigate genes that influence susceptibility to opioid addiction. In a related study published recently in PLoS Biology, Martemyanov's group showed that a gene linked to a neuropsychiatric disorder called neurofibromatosis type I acts in striatal neurons to boost the rewarding effects of morphine and regulates dopamine signaling to cAMP.

"Using this new tool for imaging cAMP responses, we can now study a variety of circuits in the brain to see how cAMP signaling underlies cognitive and motivational processes and even go after the processes that underlie mental illnesses such as depression," Martemyanov says.
-end-
Authors of the study, "Allostatic Changes in the cAMP System Drive Opioid-Induced Adaptation in Striatal Dopamine Signaling," include Brian Muntean, Maria Dao and Kirill Martemyanov, all of Scripps Research.

Support for the research was provided by the National Institutes of Health (DA041207, DA036596, DA026405).

Scripps Research Institute

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.