New blood cancer treatment works by selectively interfering with cancer cell signalling

October 22, 2020

University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published today in Nature Communications.

The research team led by Luc Berthiaume, cell biology professor in the Faculty of Medicine & Dentistry, spent four years working to understand how the compound PCLX-001 targets enzymes that perform myristoylation, a cellular process in which the fatty acid myristate modifies proteins so they can move to membranes and become part of the cell signalling system.

"The enzymes that transfer myristate onto proteins are overexpressed in some cancer cells, meaning there's more of those enzymes, so they have long been thought of as a logical target for cancer treatment," said Berthiaume, who is also chief scientific officer and co-founder of Pacylex Pharmaceuticals, the U of A spinoff company developing the drug.

"Until now no one has done a thorough analysis of this hypothesis," Berthiaume said. "We actually found that several types of cancer cells have fewer of these enzymes, making them seemingly easier to kill with our lead drug."

To demonstrate this, the researchers tested the drug against 300 different cancer cell types. They reported that blood cancer cells including lymphomas and leukemia, which have fewer of the enzymes, are extremely sensitive to the drug. It also killed other types of cancer cells when given at a higher concentration.

The team found that the drug stopped B-cell lymphoma tumour survival signals, killed B-cell tumour cells in both test-tube and animal experiments, and left non-cancerous cells unharmed, Berthiaume said.

Having completed the necessary biosafety studies, Pacylex plans to initiate Phase 1 trials of PCLX-001 in lymphoma, leukemia, breast and colon cancer patients at the Cross Cancer Institute in Edmonton, the B.C. Cancer Centre in Vancouver and Princess Margaret Cancer Centre in Toronto later this year, Berthiaume said.

"We think PCLX-001 is a compound with a large therapeutic window that can kill the cancer cells at a much lower concentration than what is needed to kill normal cells," he said. "That is the holy grail of cancer therapies." "Because of the highly selective nature of our drug, it's often referred to as a precision medicine, and we anticipate minimal side-effects," he said.
-end-
Berthiaume is a member of the Cancer Research Institute of Northern Alberta. The research was supported by the Alberta Cancer Foundation, Alberta Innovates, the World's Longest Baseball Game through the Cure Cancer Foundation, an Edmonton angel investor group, Eusera and Pacylex Pharmaceuticals.

University of Alberta Faculty of Medicine & Dentistry

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.