Optical wiring for large quantum computers

October 22, 2020

Hitting a specific point on a screen with a laser pointer during a presentation isn't easy - even the tiniest nervous shaking of the hand becomes one big scrawl at a distance. Now imagine having to do that with several laser pointers at once. That is exactly the problem faced by physicists who try to build quantum computers using individual trapped atoms. They, too, need to aim laser beams - hundreds or even thousands of them in the same apparatus - precisely over several metres such as to hit regions only a few micrometres in size that contain the atoms. Any unwanted vibration will severely disturb the operation of the quantum computer.

At ETH in Zurich, Jonathan Home and his co-workers at the Institute for Quantum Electronics have now demonstrated a new method that allows them to deliver multiple laser beams precisely to the right locations from within a chip in such a stable manner that even the most delicate quantum operations on the atoms can be carried out.

Aiming for the quantum computer

To build quantum computers has been an ambitious goal of physicists for more than thirty years. Electrically charged atoms - ions - trapped in electric fields have turned out to be ideal candidates for the quantum bits or qubits, which quantum computers use for their calculations. So far, mini computers containing around a dozen qubits could be realized in this way. "However, if you want to build quantum computers with several thousand qubits, which will probably be necessary for practically relevant applications, current implementations present some major hurdles," says Karan Mehta, a postdoc in Home's laboratory and first author of the study recently published in the scientific journal "Nature". Essentially, the problem is how to send laser beams over several metres from the laser into a vacuum apparatus and eventually hit the bull's eye inside a cryostat, in which the ion traps are cooled down to just a few degrees above absolute zero in order to minimize thermal disturbances.

Optical setup as an obstacle

"Already in current small-scale systems, conventional optics are a significant source of noise and errors - and that gets much harder to manage when trying to scale up", Mehta explains. The more qubits one adds, the more complex the optics for the laser beams becomes which is needed for controlling the qubits. "This is where our approach comes in", adds Chi Zhang, a PhD student in Home's group: "By integrating tiny waveguides into the chips that contain the electrodes for trapping the ions, we can send the light directly to those ions. In this way, vibrations of the cryostat or other parts of the apparatus produce far less disturbance."

The researchers commissioned a commercial foundry to produce chips which contain both gold electrodes for the ion traps and, in a deeper layer, waveguides for laser light. At one end of the chips, optical fibres feed the light into the waveguides, which are only 100 nanometres thick, effectively forming optical wiring within the chips. Each of those waveguides leads to a specific point on the chip, where the light is eventually deflected towards the trapped ions on the surface.

Work from a few years ago (by some of the authors of the present study, together with researchers at MIT and MIT Lincoln Laboratory) had demonstrated that this approach works in principle. Now the ETH group has developed and refined the technique to the point where it is also possible to use it for implementing low-error quantum logic gates between different atoms, an important prerequisite for building quantum computers.

High-fidelity logic gates

In a conventional computer chip, logic gates are used to carry out logic operations such as AND or NOR. To build a quantum computer, one has make sure that it can to carry out such logic operations on the qubits. The problem with this is that logic gates acting on two or more qubits are particularly sensitive to disturbances. This is because they create fragile quantum mechanical states in which two ions are simultaneously in a superposition, also known as entangled states.

In such a superposition, a measurement of one ion influences the result of a measurement on the other ion, without the two being in direct contact. How well the production of those superposition states works, and thus how good the logic gates are, is expressed by the so-called fidelity. "With the new chip we were able to carry out two-qubit logic gates and use them to produce entangled states with a fidelity that up to now could only be achieved in the very best conventional experiments", says Maciej Malinowski, who was also involved in the experiment as a PhD student.

The researchers have thus shown that their approach is interesting for future ion trap quantum computers as it is not just extremely stable, but also scalable. They are currently working with different chips that are intended to control up to ten qubits at a time. Furthermore, they are pursuing new designs for fast and precise quantum operations that are made possible by the optical wiring.
-end-
Reference

Mehta KK, Zhang C, Malinowski M, Nguyen TL, Stadler M, Home JP: Integrated optical multi-?ion quantum logic. Nature, 21. Oktober 2010, doi: 10.1038/s41586-?020-2823-6

ETH Zurich

Related Quantum Computers Articles from Brightsurf:

Optical wiring for large quantum computers
Researchers at ETH have demonstrated a new technique for carrying out sensitive quantum operations on atoms.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

A new technique prevents errors in quantum computers
A paper recently published in Nature presents a protocol allowing for the error detection and the protection of quantum processors in case of qubit loss.

New method prevents quantum computers from crashing
Quantum information is fragile, which is why quantum computers must be able to correct errors.

Natural radiation can interfere with quantum computers
Radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits.

New model helps to describe defects and errors in quantum computers
A summer internship in Bilbao, Spain, has led to a paper in the journal Physical Review Letters for Jack Mayo, a Master's student at the University of Groningen, the Netherlands.

The first intuitive programming language for quantum computers
Several technical advances have been achieved recently in the pursuit of powerful quantum computers.

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.

Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.

Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.

Read More: Quantum Computers News and Quantum Computers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.