For the first time: Realistic simulation of plasma edge instabilities in tokamaks

October 22, 2020

Edge Localised Modes, ELMs for short, are one of the disturbances of the plasma confinement that are caused by the interaction between the charged plasma particles and the confining magnetic field cage. During ELM events, the edge plasma loses its confinement for a short time and periodically throws plasma particles and energy outwards onto the vessel walls. Typically, one tenth of the total energy content can thus be ejected abruptly. While the present generation of medium-sized fusion devices can cope with this, large devices such as ITER or a future power plant would not be able to withstand this strain.

Experimental methods to attenuate, suppress or avoid ELMs have already been successfully developed in current fusion devices (see PI 3/2020). After extensive previous work, it has now been possible for the first time by means of computational simulations to identify the trigger responsible for the explosive onset of these edge instabilities and to reconstruct the course of several ELM cycles - in good agreement with experimentally observed values. A publication accepted in the scientific journal Nuclear Fusion explains this important prerequisite for predicting and avoiding ELM instabilities in future fusion devices.

The ELM instability builds up after a quiet phase of about 5 to 20 milliseconds - depending on the external conditions - until in half a millisecond between 5 and 15 percent of the energy stored in the plasma is flung onto the walls. Then the equilibrium is restored until the next ELM eruption follows.

The plasma theorists around first author Andres Cathey of IPP, who come from several laboratories of the European fusion programme EUROfusion, were able to describe and explain the complex physical processes behind this phenomenon in detail: as a non-linear interplay between destabilising effects - the steep rise in plasma pressure at the plasma edge and the increase in current density - and the stabilising plasma flow. If the heating power fed into the plasma is changed in the simulation, the calculated result shows the same effect on the repetition rate of the ELMs, i.e. the frequency, as an increase of the heating power in a plasma experiment at ASDEX Upgrade tokamak: experiment and simulation are in Agreement.

Although the processes take place in a very short time, their simulation requires a great deal of computing effort. This is because the simulation must resolve into small calculation steps both the short ELM crash and the long development phase between two ELMs - a calculation problem that could only be solved with one of the fastest supercomputers currently available.

For the simulations the JOREK code was used, a non-linear code for the calculation of tokamak plasmas in realistic geometry, which is being developed in European and international cooperation with strong contributions from IPP.

Max-Planck-Institut für Plasmaphysik (IPP)

Related Plasma Articles from Brightsurf:

Plasma treatments quickly kill coronavirus on surfaces
Researchers from UCLA believe using plasma could promise a significant breakthrough in the fight against the spread of COVID-19.

Fighting pandemics with plasma
Scientists have long known that ionized gases can kill pathogenic bacteria, viruses, and some fungi.

Topological waves may help in understanding plasma systems
A research team has predicted the presence of 'topologically protected' electromagnetic waves that propagate on the surface of plasmas, which may help in designing new plasma systems like fusion reactors.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Plasma-driven biocatalysis
Compared with traditional chemical methods, enzyme catalysis has numerous advantages.

How bacteria protect themselves from plasma treatment
Considering the ever-growing percentage of bacteria that are resistant to antibiotics, interest in medical use of plasma is increasing.

A breakthrough in the study of laser/plasma interactions
Researchers from Lawrence Berkeley National Laboratory and CEA Saclay have developed a particle-in-cell simulation tool that is enabling cutting-edge simulations of laser/plasma coupling mechanisms.

Researchers turn liquid metal into a plasma
For the first time, researchers at the University of Rochester's Laboratory for Laser Energetics (LLE) have found a way to turn a liquid metal into a plasma and to observe the temperature where a liquid under high-density conditions crosses over to a plasma state.

How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.

Give it the plasma treatment: strong adhesion without adhesives
A Japanese research team at Osaka University used plasma treatment to make fluoropolymers and silicone resin adhere without any adhesives.

Read More: Plasma News and Plasma Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to