Humans are born with brains 'prewired' to see words

October 22, 2020

COLUMBUS, Ohio - Humans are born with a part of the brain that is prewired to be receptive to seeing words and letters, setting the stage at birth for people to learn how to read, a new study suggests.

Analyzing brain scans of newborns, researchers found that this part of the brain - called the "visual word form area" (VWFA) - is connected to the language network of the brain.

"That makes it fertile ground to develop a sensitivity to visual words - even before any exposure to language," said Zeynep Saygin, senior author of the study and assistant professor of psychology at The Ohio State University.

The VWFA is specialized for reading only in literate individuals. Some researchers had hypothesized that the pre-reading VWFA starts out being no different than other parts of the visual cortex that are sensitive to seeing faces, scenes or other objects, and only becomes selective to words and letters as children learn to read or at least as they learn language.

"We found that isn't true. Even at birth, the VWFA is more connected functionally to the language network of the brain than it is to other areas," Saygin said. "It is an incredibly exciting finding."

Saygin, who is a core faculty member of Ohio State's Chronic Brain Injury Program, conducted the study with graduate students Jin Li and Heather Hansen and assistant professor David Osher, all in psychology at Ohio State. Their results were published today in the journal Scientific Reports.

The researchers analyzed fMRI scans of the brains of 40 newborns, all less than a week old, who were part of the Developing Human Connectome Project. They compared these to similar scans from 40 adults who participated in the separate Human Connectome Project.

The VWFA is next to another part of visual cortex that processes faces, and it was reasonable to believe that there wasn't any difference in these parts of the brain in newborns, Saygin said.

As visual objects, faces have some of the same properties as words do, such as needing high spatial resolution for humans to see them correctly.

But the researchers found that, even in newborns, the VWFA was different from the part of the visual cortex that recognizes faces, primarily because of its functional connection to the language processing part of the brain.

"The VWFA is specialized to see words even before we're exposed to them," Saygin said.

"It's interesting to think about how and why our brains develop functional modules that are sensitive to specific things like faces, objects, and words," said Li, who is lead author of the study.

"Our study really emphasized the role of already having brain connections at birth to help develop functional specialization, even for an experience-dependent category like reading."

The study did find some differences in the VWFA in newborns and adults.

"Our findings suggest that there likely needs to be further refinement in the VWFA as babies mature," Saygin said.

"Experience with spoken and written language will likely strengthen connections with specific aspects of the language circuit and further differentiate this region's function from its neighbors as a person gains literacy."

Saygin's lab at Ohio State is currently scanning the brains of 3- and 4-year-olds to learn more about what the VWFA does before children learn to read and what visual properties the region is responsive to.

The goal is to learn how the brain becomes a reading brain, she said. Learning more about individual variability may help researchers understand differences in reading behavior and could be useful in the study of dyslexia and other developmental disorders.

"Knowing what this region is doing at this early age will tell us a bit more about how the human brain can develop the ability to read and what may go wrong," Saygin said. "It is important to track how this region of the brain becomes increasingly specialized."
-end-
The research was supported in part by the Alfred P. Sloan Foundation. Analyses were completed using the Ohio Supercomputer Center.

Contact: Zeynep Saygin, Saygin.3@osu.edu

Written by Jeff Grabmeier, 614-292-8457; Grabmeier.1@osu.edu

Ohio State University

Related Language Articles from Brightsurf:

Learning the language of sugars
We're told not to eat too much sugar, but in reality, all of our cells are covered in sugar molecules called glycans.

How effective are language learning apps?
Researchers from Michigan State University recently conducted a study focusing on Babbel, a popular subscription-based language learning app and e-learning platform, to see if it really worked at teaching a new language.

Chinese to rise as a global language
With the continuing rise of China as a global economic and trading power, there is no barrier to prevent Chinese from becoming a global language like English, according to Flinders University academic Dr Jeffrey Gil.

'She' goes missing from presidential language
MIT researchers have found that although a significant percentage of the American public believed the winner of the November 2016 presidential election would be a woman, people rarely used the pronoun 'she' when referring to the next president before the election.

How does language emerge?
How did the almost 6000 languages of the world come into being?

New research quantifies how much speakers' first language affects learning a new language
Linguistic research suggests that accents are strongly shaped by the speaker's first language they learned growing up.

Why the language-ready brain is so complex
In a review article published in Science, Peter Hagoort, professor of Cognitive Neuroscience at Radboud University and director of the Max Planck Institute for Psycholinguistics, argues for a new model of language, involving the interaction of multiple brain networks.

Do as i say: Translating language into movement
Researchers at Carnegie Mellon University have developed a computer model that can translate text describing physical movements directly into simple computer-generated animations, a first step toward someday generating movies directly from scripts.

Learning language
When it comes to learning a language, the left side of the brain has traditionally been considered the hub of language processing.

Learning a second alphabet for a first language
A part of the brain that maps letters to sounds can acquire a second, visually distinct alphabet for the same language, according to a study of English speakers published in eNeuro.

Read More: Language News and Language Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.