Closing the plastic loop

October 22, 2020

When we started using plastics about 70 years ago, not much thought -- if any -- was given to the implications of their lifespan and the fact that they can take centuries to decompose. Consequently, as plastics have diversified and become easier to manufacture, the planet is now straddling some 8.3 billion tons of the stuff -- almost every bit of plastic ever produced -- without enough technology or incentives to shrink that growing pile. Plastic is cheaper and easier to produce and throw away than it is to recycle.

UC Santa Barbara researchers
"Here's a potential solution," said Scott, who with her colleagues has now published their research in the journal Science. Their effort, she said, is one in a growing list of possible measures that can be taken to turn plastic's linear, wasteful economy into a more sustainable, circular one.

"This is a demonstration of what can be done," she said.

A Second Life for Waste Plastics

There's no denying that modern existence owes a lot to plastics, from the packaging that keeps foods fresh, to the sterile materials used in medical applications, to the cheap, lightweight parts that go into many of our affordable, durable goods.

"There are many positive things about plastics that we have to keep in view," said Scott, a professor of chemistry and of chemical engineering at UC Santa Barbara, who holds the UCSB Mellichamp Chair in Sustainable Catalytic Processing. "At the same time, we realize that there is this really serious end-of-life issue which is an unintended consequence."

The property that makes plastics so useful is also what makes them so persistent, the researchers explained. It's their chemical inertness -- they generally don't react to other components of their environment. Plastic pipes don't rust or leach into the water supply, plastic bottles can store caustic chemicals, plastic coatings can resist high temperatures.

"You can put one of these pipes in the ground and a hundred years later you can dig it up and it's exactly the same pipe and it keeps your water completely safe," Scott said.

But this quality of inertness also makes plastics very slow to break down naturally and very energy intensive to do so artificially.

"They're made with carbon-carbon, and carbon-hydrogen bonds, and they're very difficult to chemically recycle," explained fellow chemical engineering professor Abu-Omar, who specializes in energy catalysis and holds the UCSB Mellichamp Chair in Green Chemistry. Though much research effort has been spent on learning how to reduce plastics to their basic components for sustainability purposes, the energy cost "has plagued the field for a long time," the researchers said. Even the benefit of converting these building blocks into high-value molecules is limited when it's cheaper to do the same from extracted petroleum.

"On the other hand, if we could directly convert the polymers to these higher-value molecules and completely cut out the high-energy step of going back to these building block molecules, then we have a high-value process with a low energy footprint," Scott said.

That innovative line of thinking produced a new tandem catalytic method that not only creates high-value alkylaromatic molecules directly from waste polyethylene plastic, it does so efficiently, at low cost and with a low energy requirement.

"We brought the temperature of the transformation down by hundreds of degrees," Scott said. Conventional methods, according to the paper, require temperatures between 500 and 1000°C to break down the polyolefin chains into small pieces and reassemble them into a mixture product of gas, liquid and coke, while the optimal temperature for this catalytic process hovers in the neighborhood of 300°C. The relatively mild reaction condition helps break down polymers in a more selective way to a majority of larger molecules within a lubricant range, the researchers explained. "And, we simplified the number of steps in the process because we're not doing multiple transformations," Scott said.

In addition, the process requires no solvent or added hydrogen, just a platinum on alumina (Pt/Al2O3) catalyst for a tandem reaction that both breaks those tough carbon-carbon bonds, and rearranges the polymer's molecular "skeleton" to form structures with those characteristic six-sided rings -- high-value alkylaromatic molecules that find widespread use in solvents, paints, lubricants, detergents, pharmaceuticals and many other industrial and consumer products.

"Forming aromatic molecules from small hydrocarbons is difficult," added the paper's lead author Fan Zhang. "Here, during aromatics formation from polyolefins, hydrogen is formed as a byproduct and further used to cut the polymer chains to make the whole process favorable. As a result, we get long-chain alkylaromatics, and that's the fascinating outcome."

This method represents a new direction in the lifecycle of plastics, one in which waste polymers could become valuable raw materials instead of winding up in landfills, or worse, in waterways and other sensitive habitats.

"This is an example of having a second use, where we could make these raw materials more efficiently and with better environmental impact than making them from petroleum," Abu-Omar said. Research must still be conducted to see where and how this technology would be most effective, but it's one strategy that could help mitigate the accumulation of plastic waste, recoup their value and perhaps reduce our dependency on the petroleum that plastics come from.

"We dig a hole in the ground, we produce, we make, we use, we throw away," Abu-Omar said. "So in a way, this is really breaking that way of thinking. There's interesting science to be done here that will lead us into new discoveries, new paradigms and new ways of doing chemistry."
-end-
Research on this paper was conducted also by co-lead author Manhao Zeng, Jiakai Sun and Yu-Huan Lee at UCSB; Ryan D. Yappert and Baron Peters at the University of Illinois at Urbana-Champaign and Anne M. LaPointe at Cornell University.

University of California - Santa Barbara

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.