Nav: Home

Mouse genes guide search for human anxiety disorder genes

October 23, 2008

Philadelphia, PA, October 23, 2008 - We are all familiar with the question - "Are you a man or a mouse?" What if the answer is "a little of both"? Because of the power of molecular genetics research in animals and the maturation of animal models, the path to identifying genes involved in particular types of behavior, such as fear, is much clearer in animals than in humans. There is new evidence that the genes implicated in these animal models may be directly applicable to humans.

A new genetic association study, appearing in the October 15th issue of Biological Psychiatry, evaluated genes that may be associated with the risk for human anxiety disorders. The scientists utilized a cross-species approach and tested 13 human homologs of genes that had previously shown to be differentially expressed in mouse strains that differed in their innate anxiety levels. The authors then studied groups of humans with anxiety disorders and found some evidence of association among six of these genes and particular anxiety disorders. The strongest associations were between variation in ALAD with risk for social phobia, DYNLL2 with risk for generalized anxiety disorder, and PSAP with risk for panic disorder.

John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments, "This intriguing study by Donner and colleagues harnesses the power of the animal models to guide the search for genes that contribute to the risk for human anxiety disorders. This process led to a number of interesting candidates for future study."

Corresponding author Iiris Hovatta, Ph.D., further explains, "We found gene variants that seem to specifically predispose to certain anxiety disorder types, such as panic disorder, social phobia or generalized anxiety disorder. These findings give us an excellent starting point to investigate their molecular function in the brain and how the proteins coded by these genes regulate anxiety."

These findings still need to be replicated, and further research will be necessary to understand the extent that these specific genetic variants play in predisposing one to developing an anxiety disorder. However, as the authors conclude in their article, "Nevertheless, our results illustrate the potential utility of cross-species approaches in the identification of susceptibility genes for human psychiatric disorders."
-end-
Notes to Editors:

The article is "An Association Analysis of Murine Anxiety Genes in Humans Implicates Novel Candidate Genes for Anxiety Disorders" by Jonas Donner, Sami Pirkola, Kaisa Silander, Laura Kananen, Joseph D. Terwilliger, Jouko Lönnqvist, Leena Peltonen, and Iiris Hovatta. Authors Donner, Kananen, and Hovatta are affiliated with the Research Program of Molecular Neurology, Biomedicum Helsinki, Finland. Donner, Kananen, and Hovatta are also, along with Peltonen, from the Department of Medical Genetics, University of Helsinki, Finland. Donner, Kananen, Peltonen, and Hovatta are also, along with Silander, affiliated with the Department of Molecular Medicine, National Public Health Institute and FIMM, Institute of Molecular Medicine Finland, Helsinki, Finland. Pirkola, Lönnqvist, and Hovatta are with the Department of Mental Health and Alcohol Research, National Public Health Institute, Helsinki, Finland. Pirkola and Lönnqvist are also from the Department of Psychiatry, Helsinki University Central Hospital, Finland. Terwilliger is affiliated with the Faculty of Medicine at the University of Helsinki, Helsinki, Finland; the Department of Genetics and Development and the Department of Psychiatry, Columbia Genome Center, Columbia University, New York, New York; and, the Division of Medical Genetics, New York State Psychiatric Institute, New York, New York. Peltonen is also affiliated with The Broad Institute of MIT and Harvard, Cambridge, Massachusetts and the Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom. The article appears in Biological Psychiatry, Volume 64, Issue 8 (October 15, 2008), published by Elsevier.

The authors' disclosures of financial and conflicts of interests are available in the article. Dr. Krystal's disclosures of financial and conflicts of interests are available here (http://journals.elsevierhealth.com/webfiles/images/journals/bps/Biological_Psychiatry_Editorial_Disclosures_08_01_08.pdf).

Full text of the article mentioned above is available upon request. Contact Jayne M. Dawkins at (215) 239-3674 or ja.dawkins@elsevier.com to obtain a copy or to schedule an interview.

About Biological Psychiatry

This international rapid-publication journal is the official journal of the Society of Biological Psychiatry. It covers a broad range of topics in psychiatric neuroscience and therapeutics. Both basic and clinical contributions are encouraged from all disciplines and research areas relevant to the pathophysiology and treatment of major neuropsychiatric disorders. Full-length and Brief Reports of novel results, Commentaries, Case Studies of unusual significance, and Correspondence and Comments judged to be of high impact to the field are published, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Concise Reviews and Editorials that focus on topics of current research and interest are also published rapidly.

Biological Psychiatry (http://www.sobp.org/journal) is ranked 4th out of the 95 Psychiatry titles and 16th out of 199 Neurosciences titles on the 2006 ISI Journal Citations Reports® published by Thomson Scientific.

About Elsevier

Elsevier is a world-leading publisher of scientific, technical and medical information products and services. Working in partnership with the global science and health communities, Elsevier's 7,000 employees in over 70 offices worldwide publish more than 2,000 journals and 1,900 new books per year, in addition to offering a suite of innovative electronic products, such as ScienceDirect (http://www.sciencedirect.com/), MD Consult (http://www.mdconsult.com/), Scopus (http://www.info.scopus.com/), bibliographic databases, and online reference works.

Elsevier (http://www.elsevier.com/) is a global business headquartered in Amsterdam, The Netherlands and has offices worldwide. Elsevier is part of Reed Elsevier Group plc (http://www.reedelsevier.com/), a world-leading publisher and information provider. Operating in the science and medical, legal, education and business-to-business sectors, Reed Elsevier provides high-quality and flexible information solutions to users, with increasing emphasis on the Internet as a means of delivery. Reed Elsevier's ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Elsevier

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Related Genes Reading:

The Gene: An Intimate History
by Siddhartha Mukherjee (Author)

Dirty Genes: A Breakthrough Program to Treat the Root Cause of Illness and Optimize Your Health
by Ben Lynch ND. (Author)

Lewin's GENES XII
by Jocelyn E. Krebs (Author), Elliott S. Goldstein (Author), Stephen T. Kilpatrick (Author)

Genetics: From Genes to Genomes, 5th edition
by Leland H. Hartwell (Author), Michael L. Goldberg (Author), Janice A. Fischer (Author), Leroy Hood (Author), Charles F. Aquadro (Author)

Super Genes: Unlock the Astonishing Power of Your DNA for Optimum Health and Well-Being
by Deepak Chopra M.D. (Author), Rudolph E. Tanzi Ph.D. (Author)

Zero Hour for Gen X: How the Last Adult Generation Can Save America from Millennials
by Matthew Hennessey (Author)

Genetics: Genes, genomes, and evolution
by Philip Meneely (Author), Rachel Dawes Hoang (Author), Iruka N. Okeke (Author), Katherine Heston (Author)

Gen Z: The Culture, Beliefs and Motivations Shaping the Next Generation
by Barna Group (Author)

Barefoot Gen, Vol. 1: A Cartoon Story of Hiroshima
by Keiji Nakazawa (Author)

Genetics: From Genes to Genomes
by Leland Hartwell Dr. (Author), Michael L. Goldberg Professor Dr. (Author), Janice Fischer (Author), Leroy Hood Dr. (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#492 Flint Water Crisis
This week we dig into the Flint water crisis: what happened, how it got so bad, what turned the tide, what's still left to do, and the mix of science, politics, and activism that are still needed to finish pulling Flint out of the crisis. We spend the hour with Dr Mona Hanna-Attisha, a physician, scientist, activist, the founder and director of the Pediatric Public Health Initiative, and author of the book "What the Eyes Don't See: A Story of Crisis, Resistance, and Hope in an American City".