Neuroscientists propose revolutionary DNA-based approach to map wiring of whole brain

October 23, 2012

Cold Spring Harbor, NY -- A team of neuroscientists has proposed a new and potentially revolutionary way of obtaining a neuronal connectivity map (the "connectome") of the whole brain of the mouse. The details are set forth in an essay published October 23 in the open-access journal PLOS Biology.

The team, led by Professor Anthony Zador, Ph.D., of Cold Spring Harbor Laboratory, aims to provide a comprehensive account of neural connectivity. At present the only method for obtaining this information with high precision relies on examining individual cell-to-cell contacts (synapses) in electron microscopes. But such methods are slow, expensive and labor-intensive.

Zador and colleagues instead propose to exploit high-throughput DNA sequencing to probe the connectivity of neural circuits at the resolution of single neurons.

"Our method renders the connectivity problem in a format in which the data are readable by currently available high-throughput genome sequencing machines," says Zador. "We propose to do this via a process we're now developing, called BOINC: the barcoding of individual neuronal connections."

The proposal comes at a time when a number of scientific teams in the U.S. are progressing in their efforts to map connections in the mammalian brain. These efforts use injections of tracer dyes or viruses to map neuronal connectivity at a "mesoscopic" scale--a mid-range resolution that makes it possible to follow neural fibers between brain regions. Other groups are scaling up approaches based on electron microscopy.

Zador's team wants to trace connectivity "beyond the mesoscopic," at the level of synaptic contacts between pairs of individual neurons, throughout the brain. The BOINC barcoding technique, now undergoing proof-of-concept testing, will be able, says Zador, "to provide immediate insight into the computations that a circuit performs." In practice, he adds, most neural computations are not currently understood at this level of precision, partly because detailed circuit information is not available for mammals. The BOINC method promises to be much faster and cheaper than approaches based on electron microscopy, Zador says.

The BOINC method consists of three steps. First, each neuron is labeled with a specific DNA barcode. A barcode consisting of just 20 random DNA "letters" can uniquely label a trillion neurons--many more than exist in the mouse brain.

The second step looks at neurons that are synaptically connected, and associates their respective barcodes with one other. One way to do this is by exploiting a virus such as the pseudorabies virus, which can move genetic material across synapses.

"To share barcodes across synapses, the virus must be engineered to carry the barcode within its own genetic sequence," explains Zador. "After the virus spreads across synapses, each neuron effectively ends up as a bag of barcodes, comprising its own code and those from synaptically coupled partners."

The third step involves joining barcodes from synaptically connected neurons to make single pieces of DNA, which can then be read via existing high-throughput DNA sequencing methods. These double-barcode sequences can then be analyzed computationally to reveal the synaptic wiring diagram of the brain.

Taken together, says Zador, if BOINC succeeds in its current proof-of-concept tests, it will offer a dramatically inexpensive and rapid means of assembling a connectome, even of the complex brains of mammals.
-end-
"Sequencing the Connectome" appears in PLoS Biology on October 23, 2012. The authors are: Anthony M. Zador, Joshua Dubnau, Hassana K. Oyibo, Huiqing Zhan, Cao Gang and Ian D. Peikon. The paper can be obtained at: http://www.plosbiology.org

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 360 scientists strong and its Meetings & Courses program hosts more than 12,500 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit www.cshl.edu.

Cold Spring Harbor Laboratory

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.