Nav: Home

Scientists build 'mechanically active' DNA material

October 23, 2012

Artificial muscles and self-propelled goo may be the stuff of Hollywood fiction, but for UC Santa Barbara scientists Omar Saleh and Deborah Fygenson, the reality of it is not that far away. By blending their areas of expertise, the pair have created a dynamic gel made of DNA that mechanically responds to stimuli in much the same way that cells do. The results of their research were published online in the Proceedings of the National Academy of Sciences.

"This is a whole new kind of responsive gel, or what some might call a 'smart' material," said Saleh, associate professor of materials, affiliated with UCSB's Biomolecular Science and Engineering program. "The gel has active mechanical capabilities in that it generates forces independently, leading to changes in elasticity or shape, when fed ATP molecules for energy--much like a living cell."

Their DNA gel, at only 10 microns in width, is roughly the size of a eukaryotic cell, the type of cell of which humans are made. The miniscule gel contains within it stiff DNA nanotubes linked together by longer, flexible DNA strands that serve as the substrate for molecular motors.

"DNA gives you a lot more design control," said Fygenson, associate professor of physics and also affiliated with UCSB's BMSE program. "This system is exciting because we can build nano-scale filaments to specifications." Using DNA design, she said, they can control the stiffness of the nanotubes and the manner and extent of their cross-linking, which will determine how the gel responds to stimuli.

Using a bacterial motor protein called FtsK50C, the scientists can cause the gel to react in the same way cytoskeletons react to the motor protein myosin--by contracting and stiffening. The protein binds to predetermined surfaces on the long linking filaments, and reels them in, shortening them and bringing the stiffer nanotubes closer together. To determine the gel's movement the scientists attached a tiny bead to its surface and measured its position before and after activation with the motor protein.

The breakthrough, said Saleh, is that this gel "quantitatively shows similar active fluctuations and mechanics to cells."

"This new material could provide a means for controllably testing active gel mechanics in a way that will tell us more about how the cytoskeleton works," Saleh said. Like a cell, which consumes adenosine triphosphate (ATP) for energy, the DNA gel's movement runs on ATP, allowing for faster, stronger mechanics than other smart gels based on synthetic polymers.

"The development of active gels represents a water-shed event for the broader materials community," commented Craig Hawker, director of the Materials Research Laboratory at UCSB: an NSF MRSEC, which provided seed money for their research. "By exploiting cellular building blocks, it offers unique design parameters when compared to existing gel systems that can be used in a wide range of both established biomedical applications as well as totally new applications."

The project has potential applications for a variety of fields, including smart materials, artificial muscle, understanding cytoskeletal mechanics and research into nonequilibrium physics, as well as DNA nanotechnology. Long-term implications of this research are significant, Hawker added, with the final result being "a fundamental breakthrough in soft-materials science and engineering."

Having created a gel that can replicate contractions, Saleh and Fygenson are now looking to refine their technique and enable distinct movements, such as twisting and crawling, or using other motor proteins that would allow the gel to mimic other cell behaviors, such as shape-shifting and dividing.

"Biology provides a wide range of motors that we have only begun to explore," Saleh said.

"And the suite of nanostructure designs and geometries at our disposal is nearly limitless," echoed Fygenson.
-end-


University of California - Santa Barbara

Related Dna Articles:

In one direction or the other: That is how DNA is unwound
DNA is like a book, it needs to be opened to be read.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
Switching DNA and RNA on and off
DNA and RNA are naturally polarised molecules. Scientists believe that these molecules have an in-built polarity that can be reoriented or reversed fully or in part under an electric field.
More Dna News and Dna Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.