Research on DNA access mechanism could offer novel ways to treat cancer

October 23, 2012

While every one of our cells contains all of our genetic information, each type of cell uses only specific parts of that information to make its proteins. Uncovering more about the mechanism that directs which particular pieces of genetic information the cell uses is the research focus of Mary Ann Osley, PhD, University of New Mexico Professor of Molecular Genetics and Microbiology and Co-Leader of the Cancer Biology and Biotechnology Program at the UNM Cancer Center. An understanding of this mechanism could help to understand how cancer arises--and therefore how we may be able to prevent it or treat it with specifically targeted drugs. Dr. Osley recently won a 4-year grant renewal to continue the epigenetic research she's been conducting for the past 22 years.

Epigenetics is the study of how the cell determines which part of the genetic information encoded in the DNA to act on. A long and extremely fine threadlike molecule, DNA loops and coils on itself in order to fit inside the cell nucleus. Proteins called histones attach to DNA to help in this looping and coiling process. Other molecules called histone modifications attach to the histones and, among other functions, control which parts of the DNA the cell is able to copy for protein synthesis. In cancer, histone modifications can activate cancer-causing oncogenes or repress tumor-suppressing genes; they can defeat the cell's built-in defenses against cancer. How and why these histone modifications behave this way is a key question Dr. Osley is trying to answer.

One area of her research has led to the discovery of a histone modification in which a small protein called ubiquitin attaches to a histone called H2B. Aptly named because it is found in almost every cell, ubiquitin performs many different functions. Dr. Osley's research has shown that when ubiquitin attaches to H2B one of its functions is to aid transcription, the first step in making a protein. Dr. Osley's research team first observed this H2B-ubiquitin behavior in yeast and other researchers have since seen the same behavior in mammalian cells. Dr. Osley's research is now focusing on how ubiquitin attaches to H2B and whether its presence or absence affects the cell's ability to copy DNA. Since many cancer cells have aberrant chromosomes, understanding where and how this DNA copying mechanism goes awry could lead to novel ways to target cancer cells.

Another area of Dr. Osley's epigenetic research has led to the study of quiescent cells. Although still alive, the transcription and DNA replication activity of quiescent cells is at a standstill. But almost immediately after giving them food, quiescent cells resume their activity. As Dr. Osley explains, "they rapidly start to grow again and we notice bursts of RNA being made as transcription takes place." Dr. Osley is studying many different histone modifications to try to understand how cells become quiescent and how they survive in this state. This research, she thinks, could lead to a completely new way to target cancerous adult stem cells.

Adult stem cells, which are different from embryonic stem cells, are the cells in our bodies that can rapidly renew our tissues by forming specific types of tissue. For example, adult stem cells in bone marrow can grow red or white blood cells but they can't grow brain cells. Adult stem cells are few in number and quiescent. That means that most cancer drugs don't affect them because cancer drugs target active cells, those cells that are in the process of dividing. So, if an adult stem cell is cancerous and quiescent, it can escape the effects of cancer drugs and survive to produce recurrent tumors.

"We think these histone modifications poise the genes to be in a ready state," Dr. Osley explains, "so quiescent cells can recognize when to turn on." Understanding what this ready state looks like--and how and whether it differs between cancerous and non-cancerous adult stem cells--will take some time. But the results could be well worth waiting for.
-end-
About the Grant

The National Institute of General Medical Sciences, an institute of the National Institutes of Health, supported the research reported in this publication under Award Number R01GM040118-22, Principal Investigator: Osley, Mary Ann. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

About the UNM Cancer Center

The UNM Cancer Center is the Official Cancer Center of New Mexico and the only National Cancer Institute-designated cancer center in the state. One of just 67 NCI-designated cancer centers nationwide, the UNM Cancer Center is recognized for its scientific excellence, contributions to cancer research and delivery of medical advances to patients and their families. Annual federal and private funding of nearly $60 million support the UNM Cancer Center's research programs. It is home to New Mexico's largest team of board-certified oncology physicians and research scientists, representing every cancer specialty and hailing from prestigious institutions such as MD Anderson, Johns Hopkins and the Mayo Clinic. The UNM Cancer Center treats more than 65 percent of the adults and virtually all of the children in New Mexico affected by cancer, from every county in the state. Its partnership with Memorial Hospital in Las Cruces the UNM Cancer Center brings cancer care to the southern part of the state and it supports clinics in Santa Fe and Farmington to serve the northern part of the state. The UNM Cancer Center also supports several community outreach programs to make cancer screening, diagnosis and treatment available to every New Mexican. In 2010, it provided care to more than 15,800 cancer patients. Learn more at http://cancer.unm.edu.

UNM Cancer Center contact information

Dorothy Hornbeck, JKPR, (505) 340-5929, dhornbeck@jameskorenchen.com

Michele Sequeira, UNM Cancer Center, (505) 925-0486, msequeira@salud.unm.edu

University of New Mexico Cancer Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.