Scientists uncover how protein ensures reproductive success

October 23, 2014

An international team of researchers from Japan and the UK has discovered how a single protein, called PP4, oversees the processing of DNA during sperm and egg generation for successful fertilization. This protein's activity becomes even more paramount during aging. The study, published in the journal PLOS Genetics, may one day help scientists to understand the mechanisms underlying age-related fertility declines in humans.

While a typical adult human cell contains 46 DNA strands, or chromosomes, that carry our complete genetic information, reproductive cells such as sperm and eggs receive half of this number during a highly intricate process known as "meiosis." How chromosomes are mixed, matched and distributed into reproductive cells accurately is essential for successful fertilization and the development of diverse new life. However, errors in the system can lead to infertility.

To understand which proteins help meiosis run smoothly, the researchers from Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) and Tohoku University in Japan, and Imperial College in London, used a tiny worm known as Caenorhabditis elegans to look into the role of PP4.

The researchers genetically engineered the worm so that PP4 was functionally disabled, and then observed the consequences of its absence on chromosome regulation during meiosis. The researchers used a super-resolution microscope, which takes pictures at twice the level of detail compared to a normal microscope.

"We found that when PP4 was missing, chromosomes failed to assemble correctly and DNA recombination, an important step for genetic diversity, did not occur," said Aya Sato-Carlton a researcher involved in the study from iCeMS. "The resulting eggs were defective, and the embryos inside could not survive after fertilization," added Sato-Carlton.

Surprisingly, the authors observed that the effects of defective PP4 became even worse as the worms aged, indicating an age-related dependence.

Because the PP4 DNA of worms is over 90% identical with that of humans, it is possible that the protein plays a similar role in all animals as a universal regulator of meiosis, particularly as an organism ages.

"However, it's too early to say for certain that PP4 has a similar kind of role in humans", said Peter Carlton, the principal investigator of the study from iCeMS. "The next step is to see whether we observe the same kind of phenomenon in mice."
-end-


Institute for Integrated Cell-Material Sciences, Kyoto University

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.