Florida lizards evolve rapidly, within 15 years and 20 generations

October 23, 2014

Scientists working on islands in Florida have documented the rapid evolution of a native lizard species -- in as little as 15 years -- as a result of pressure from an invading lizard species, introduced from Cuba.

After contact with the invasive species, the native lizards began perching higher in trees, and, generation after generation, their feet evolved to become better at gripping the thinner, smoother branches found higher up.

The change occurred at an astonishing pace: Within a few months, native lizards had begun shifting to higher perches, and over the course of 15 years and 20 generations, their toe pads had become larger, with more sticky scales on their feet.

"We did predict that we'd see a change, but the degree and quickness with which they evolved was surprising," said Yoel Stuart, a postdoctoral researcher in the Department of Integrative Biology at The University of Texas at Austin and lead author of the study appearing in the Oct. 24 edition of the journal Science.

"To put this shift in perspective, if human height were evolving as fast as these lizards' toes, the height of an average American man would increase from about 5 foot 9 inches today to about 6 foot 4 inches within 20 generations -- an increase that would make the average U.S. male the height of an NBA shooting guard," said Stuart. "Although humans live longer than lizards, this rate of change would still be rapid in evolutionary terms."

The native lizards studied, known as Carolina anoles or green anoles, are common in the southeastern U.S. The invasive species, Cuban anoles or brown anoles, are native to Cuba and the Bahamas. Brown anoles first appeared in South Florida in the 1950s, possibly as stowaways in agricultural shipments from Cuba, and have since spread across the southeastern U.S. and have even jumped to Hawaii.

This latest study is one of only a few well-documented examples of what evolutionary biologists call "character displacement," in which similar species competing with each other evolve differences to take advantage of different ecological niches. A classic example comes from the finches studied by Charles Darwin. Two species of finch in the Galápagos Islands diverged in beak shape as they adapted to different food sources.

The researchers speculate that the competition between brown and green anoles for the same food and space may be driving the adaptations of the green anoles. Stuart also noted that the adults of both species are known to eat the hatchlings of the other species.

"So it may be that if you're a hatchling, you need to move up into the trees quickly or you'll get eaten," said Stuart. "Maybe if you have bigger toe pads, you'll do that better than if you don't."

Stuart's co-authors are Todd Campbell at the University of Tampa; Paul Hohenlohe of the University of Idaho; Robert Reynolds of the University of Massachusetts, Boston; Liam Revell at the University of Massachusetts, Boston; and Jonathan Losos at Harvard University.
-end-
Support for this research was provided by the National Science Foundation, the National Institutes of Health, The University of Tennessee, Knoxville, and the Museum of Comparative Zoology at Harvard University.

University of Texas at Austin

Related Invasive Species Articles from Brightsurf:

The invasive species that Europe needs to erradicate most urgently are identified
An international research team analyzed the risk impact and the effectiveness of possible erradication strategies for invasive species already in the region as well as those that have yet to arrive

Crayfish 'trapping' fails to control invasive species
Despite being championed by a host of celebrity chefs, crayfish 'trapping' is not helping to control invasive American signal crayfish, according to new research by UCL and King's College London.

Climate change is impacting the spread of invasive animal species
What factors influence the spread of invasive animal species in our oceans?

Invasive alien species may soon cause dramatic global biodiversity loss
An increase of 20 to 30 per cent of invasive non-native (alien) species would lead to dramatic future biodiversity loss worldwide.

Protected areas worldwide at risk of invasive species
Protected areas across the globe are effectively keeping invasive animals at bay, but the large majority of them are at risk of invasions, finds a involving UCL and led by the Chinese Academy of Science, in a study published in Nature Communications.

Charismatic invasive species have an easier time settling into new habitats
An international study, in which the University of Cordoba participated, assessed the influence of charisma in the handling of invasive species and concluded that the perception people have of them can hinder our control over these species and condition their spread

Invasive species with charisma have it easier
It's the outside that counts: Their charisma has an impact on the introduction and image of alien species and can even hinder their control.

Invasive species that threaten biodiversity on the Antarctic Peninsula are identified
Mediterranean mussels, seaweed and some species of land plants and invertebrates are among the 13 species that are most likely to damage the ecosystems on the Antarctic Peninsula.

Research networks can help BRICS countries combat invasive species
BRICS countries need more networks of researchers dedicated to invasion science if they wish to curb the spread of invasive species within and outside of their borders.

Look out, invasive species: The robots are coming
Researchers published the first experiments to gauge whether biomimetic robotic fish can induce fear-related changes in mosquitofish, aiming to discover whether the highly invasive species might be controlled without toxicants or trapping methods harmful to wildlife.

Read More: Invasive Species News and Invasive Species Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.