New DNA research reveals undiscovered white dots on the map

October 23, 2015

Researchers at the University of Copenhagen have located a previously unknown function in the so-called histones, which allows for an improved understanding of how cells protect and repair DNA damages. This knowledge may eventually result in better treatments for diseases such as cancer.

The researchers have discovered a hitherto unknown function in the so-called histones, which can contribute to better treatments for diseases caused by cellular changes.

"I believe that there's a lot of work ahead. It's like opening a door onto a previously undiscovered territory filled with lots of exciting knowledge. The histones are incredibly important to many of the cells' processes as well as their overall wellbeing," says Niels Mailand from the Novo Nordisk Foundation Centre for Protein Research at the Faculty of Health and Medical Science.

This new discovery may be of great importance to the treatment of diseases caused by cellular changes such as cancer and immune deficiency syndrome. The findings have just been published in the scientific journal, Nature.

Histones enable the tight packaging of DNA strands within cells. The strands are two metres in length and the cells usually approx. 100,000 times smaller. Generally speaking, there are five types of histones. Four of them are so-called core histones, and they are placed like beads on the DNA strands, which are curled up like a ball of wool within the cells. The role of the histones is already well described in research, and in addition to enabling the packaging of the DNA strands they also play a central part in practically every process related to the DNA-code, including repairing possibly damaged DNA.

The four core histones have so-called tails, and among other things they signal damage to the DNA and thus attract the proteins that help repair the damage. Between the histone "yarn balls" we find the fifth histone, Histone H1, but up until now its function has not been thoroughly examined.

Using a so-called mass spectrometer, a technique developed in collaboration with fellow researchers at the Novo Nordisk Foundation Centre for Protein Research, Niels Mailand and his team have discovered that, surprisingly, the H1 histone also helps summon repair proteins.

"In international research, the primary focus has been on the core histones and their functionality, whereas little attention has been paid to the H1 histone, simply because we weren't aware that it too influenced the repair process. Having discovered this function in the H1 constitutes an important piece of the puzzle of how cells protect their DNA, and it opens a door onto hitherto unknown and highly interesting territory," Niels Mailand elaborates.

He expects the discovery to lead to increased research into Histone H1 worldwide, which will lead to increased knowledge of cells' abilities to repair possible damage to their DNA and thus increase our knowledge of the basis for diseases caused by cellular changes. It will also generate more knowledge about the treatment of these diseases.

"The knowledge we generate can prove important to the development of more targeted treatments for diseases caused by cellular changes, including cancer. By mapping the function of the H1 histone, we will also learn more about the repair of DNA damages on a molecular level. In order to provide the most efficient treatment, we need to know how the cells prevent and repair these damages," Niels Mailand concludes.
-end-


University of Copenhagen The Faculty of Health and Medical Sciences

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.